Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dcd020d655589144001ac108b332a923b2eefed88c814abc8f57e36ad7c62e11
MD5 89ec242242a9bfd2b0b19765086d3dd4
BLAKE2b-256 fdebadb217448bcd54c056f50037e0f16e06b05b70524963aadd215c2b88ddf7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 740b2d3ce1f4a83715c8996104b177889c4e5e0507a047c5bcfd272d64357a71
MD5 f673039fb69956359c98eee6f960e817
BLAKE2b-256 1087d092412761d4ca4d74000230a2e7621bec02bc62f52b7481b5f916b705ed

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8b2568b6a37155f26f99d40aeeec08d6e8da7691ed666e4fb91b8270cee97991
MD5 35b210c4160b21bb5ced29ad3b261c3d
BLAKE2b-256 ee5d4ff29be4128a0e579c603ff5df3cfbb73b52938bc57ca4914ec5c0db28de

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c590724b60dedeb8f7f05c2777c70719c9be3bdd6ef775d98b77b6d95bf3c136
MD5 3e928cbf99ae0fc5311e587ddd1360a4
BLAKE2b-256 4328af9b17878b56841822a9ac8ca2f1c50b723eb44d5a0ba7f1f32a999f99dc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 12165b07103bc05a4f5f7670dfeaca56769350f88c529f340a480ad3b75b84d4
MD5 69e44d8fa34deab029fb2335ef4a046a
BLAKE2b-256 652b86ea9ba0ed97a89898e75e47a60c6cd695c0b9638812092121c1ade46bd9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3bc474e804530ebc26cecd827a54b981768590ecfaf33a969f66877ddacf3406
MD5 fca7f599520f2db4f3762753c68df2ec
BLAKE2b-256 384297090312745f1f2b00152f08d6aa42b457726b730953c6525e985ddbcdc9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9fd2fc922e81f798f0b460b27de0008b8f811948285d9e1061359bb3b3b9f2c5
MD5 319edc225583f405e973050f1b28cb8e
BLAKE2b-256 5562f36798f2cea0f915c512fa3499c29350c08fe897122f1be221118d727c44

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 980710ff737f4ac5a1c8bb932f8a8c423680e3a2380bd3cd90bc90fab354e863
MD5 2a16ad0ac2d74d40b563104ba221099b
BLAKE2b-256 ac1e5759efde887fcf087546e935ae3dddc822b6ce9fbcd96752363d6acc6654

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0c6b2114ede84cf194eed0e4fb44ea48a94aa3c98f5c313159f876cb7d710819
MD5 76662a702813c7e54772a867d4bba78a
BLAKE2b-256 2ef6770b810fcc55dfa88c351e533b3d5b09d0899546b6cd25e3daea9723fa67

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8fe7d0eb0e0ca2ea1350d6580ef6a4dc104193fd7a43288013bedfd3a88f4de1
MD5 b37ef1a7ce22f551f28d5e348956af3f
BLAKE2b-256 198f91e77ca6655b92dba1c7377cb798417a0d9cc4875ed85b02e91dd6e25fab

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6c42a8547e0bad571d26eb25c103db893095e122e840ed67b7e51b02b375c890
MD5 37818e24e3f259b225e0267d76caf19f
BLAKE2b-256 e1d450cae444a17086410d3bc059d1128167e39ad93a1f788bbf1ceee2bd9317

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6737ef66b8b42efd6deac8f4432263b61badb8b773edd94a376e538cca0f2148
MD5 6d5c42d11dfb9d9f94d826a545b39baa
BLAKE2b-256 c5103a99577db5b9890066e92dd2fa6f194a5d673d40b7687742cb601fe9b24b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3d8fdef2726f9243aa7df77b94cf9f331e0187cb4cfe8428b9364fca23bf0c0c
MD5 d6ebd17be468dcd4d36a0f7348b491c2
BLAKE2b-256 be11ee87b05495fa230dae1c223f18ff57a9ebb96a31ce2969b443104a60b2a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cda80c5a23bd5da0d5b0c2f1481aa4faba39808ba2149993729d0a414a3897b2
MD5 09b7c2268edd1e696d4151117c4d8077
BLAKE2b-256 5be74a5aeba68a59c276d69eebef2e34b3c2f82247ef9c329f5abc9575a7a194

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.29.0.dev20221218011724-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 13bc98fea74fe29b305cc157937381dfc0f0066ae63183ff878df8928a6c3110
MD5 b5e63e154b034376c0e8560e016b0348
BLAKE2b-256 b6cd6b6ad8474e3e1bf50564f9f240eecf1db926af609b10c45fd86d82905ba2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page