Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e35fac43f84e0d25c644126af616bb4bbc46a2578532b38638c840bd44830db9
MD5 73c6ccdb35b6e6ca5171da6b550d5bfe
BLAKE2b-256 44faff9725e9d78d2f6fa7c36761bfd81b72fc18469ba0d02f18916e1b97f38a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d6d0ef57b6eb88a29d504c92f9ca047fb596e2caee0b5766ca488e2776f042e
MD5 928aa19f6ea34eea17f94e388a04508d
BLAKE2b-256 59f8c173e3246540bc3b361c63d50a4e445d9e375bf54e56148adcab6a5319f1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 550f7abb9b83fc2b2c852fe6a5d2350f8f505134d5ddb924d228f427d267a6db
MD5 d49b420f29265ba6e9ce6b8aa5322e2c
BLAKE2b-256 1604c0fac24bab7f5f2a201ad7f328cd4af36a0cf4400e17717c5e9dbd6b9ee0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 437334706ff63d845c6e5601b21203eeca7afa3a45ef45892f9fe8a7dabcbad2
MD5 73e70ca895c0742964b5bdc5c37058f5
BLAKE2b-256 0189668b22a9a6463809f6a0fb47212c44a3a26e184bc20d35cd49fb41839178

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e2ab90c8d51b7e151909a2a767b45dd228152b72b47f3fdd1ed24a542f91a28
MD5 3a2e1ef97fe4973f8ddbe8255b1c3d08
BLAKE2b-256 e64472c29706c155bfa4456db72a51b7fd974e97b336792e965cb389cc124e2f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 baaf33ef81504b50f600c37e94f602ec8fb25cc855c79e0df41c210ca1dea9b2
MD5 eb0a086ea31df22c2e50fd303217d26c
BLAKE2b-256 fdf46e036b2a10ce374729f096294d5827ac1cbf6dadd6305566dd6f961d522f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df85c1be47b1745b400fbd70ba1e31dc7a4b53a8ed7df4ced166a8c9f7d29896
MD5 2a2e75e394d7b10274636c3c28d4ebc0
BLAKE2b-256 5e31df1ac6562825ea24ad1a05d788cad21feec1224a81a30a571775ff7770e8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 119fcf063a5b637e5b5c5b761ccd9d69b86b7fabaaaa62704a864cce8fae4b26
MD5 7095fad5cb08500f5f4e22ed628588b3
BLAKE2b-256 14a18dfb227613abd7eb20e594dcbb7fe4d737ac1890f54011d11a6ff1d6fecd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e5c1ab2741766d57d2790f69c52664abd5469c5ba65bc311a42b897b75f671b7
MD5 32c8d99011d64c5f76ed6ba68d633993
BLAKE2b-256 b6f55d505623da11df7e94195d00c1052ca5b35af1621a948220546fbe56f936

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ee17fe5d55cf3296ad7b79e343e25cff290c28bbfe0c53b1cb7699ca40a0df7f
MD5 c2904448badd98c686c0940002eb3f2d
BLAKE2b-256 9638f0a0c4c78bdf05ffd9c4f3ab9474b88132bb7d4029146c66e9799f64539d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1984734dec8b1780cb3d4399dc30ded00fc4bc95d8805de3894ab59b7c4951a8
MD5 5d75afff8a3435ec4326a4cc0a686c35
BLAKE2b-256 591c530b6258141fb04a38fcd383da3231ba021f9dffa8c1b52267e492fca6dc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 add6a1489dc1fa9098a07893de54c95bc3416b12bc5aaab9cdd08fe19a53351a
MD5 6a592924a126356396c7034a2e5f3476
BLAKE2b-256 2768e06fe39e001ebb18329f7cecd8e4c4bec6877ee1ca4865705c7d4b0249a0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 87ac18a2beb765f589e1b261385c2943d07ee0620b10ed04374ebb56a2b8641c
MD5 97fb2274031905b67c54a4980c0b8c4a
BLAKE2b-256 5c3f47261f7c24d16293a3b10766468763494bdf224a1564ee8bbebf81d45df4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7fe9b1969c9f6f64534238945c7a43d3930b88d09e8806dd9d5821e89e77f5e
MD5 c03c5bbd3441aa16d5f81fb7268a9cbc
BLAKE2b-256 291635b2f59e9871c03b5e21d9e540173b7003c6178b1291e9285d1a48bfa23f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.30.0.dev20230207000017-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d809459275e601015fed9e666babb9f5145e952b44524f06f38a6c4937d6ebec
MD5 8d387fcffa3b9fe88e63c29ac032df48
BLAKE2b-256 e391a585823893e5bc3b20efbef2d8e3698df6b034825c5825172f472af0276b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page