Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.31.0 2.11.x Feb 25, 2022
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e20354973445c920b371367b86db7a83c786092d19dd70946b9104f958267be8
MD5 9ee5d514a759998a76adae6c68f554db
BLAKE2b-256 40fca96eded6bd9b7dfd1ee355c86f0d2904765e1a2b47d9c1cee9d026905439

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 74fd6b531be47fb43ee9fedb25814f90ae441b199661c1754d1186e2ff0b0a56
MD5 f9e66b29db9df1b8a480c3056375e424
BLAKE2b-256 c1b71381a47d38fc89a59e9282d6c5279e18ac67b0d3e265191c1b3aa586b801

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e8746c06501cebf099de60ec4d5447efdb759c83e778eb2b1b447bd795f2adce
MD5 e33cf062ea8f85456103b7d7a3733217
BLAKE2b-256 c2346eaf4e4f22b1aaa666739e4d49aaf6416b004f451daf6c765e68a4a242f1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b34da00da0461737e0162e4e972bfb3a50cd21b1811e790b00f7f8d22658cdd
MD5 2ee69de800ce7836c489a42bc8199cca
BLAKE2b-256 eb6660877044b4858dea26f6ce0abbbfba2a3b76e2e6a28e9f3cd3cedf5baa58

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed17b8ab4bfd5c87f756eee11793b6fd76219ad14e2513db1219714c0e72a7f5
MD5 56e6b461c691324281eca5f7950ffad1
BLAKE2b-256 027815d8bfc9695c2b8f3b9daaed0923cc96e12cd595a6a547300c6db13ebeed

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fc5a0c481ae6afd593e168655ea13c537c352469a1098949fe98a0886c34a3d2
MD5 61fa6536d6515f76c8b438b06b404f24
BLAKE2b-256 c424d5ed99eaab7b420ed2df647296fa76033d435d95af4aa59d4791cf392574

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a4fc9390aff33576b2c53731afc5da2f366da6d294dcb4c94d3ae1391e05aca4
MD5 91a5e28042c15caf9e34c359219d4804
BLAKE2b-256 e059ba5e3e74db3c859382dc3e36b613c6945c5a6bacca7dd90060e476dda5c1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 461fa76b3a9b7101c0cbb2f83b6e4eb2533de22abee72f9d570bfee7d6f529f8
MD5 f86479ed3a995f16b39e48c8ff4ee9ae
BLAKE2b-256 c3d0f36ff5309ed86c551ae0551ddceb3438931c146ed7b67f1f4f5d9bb57ded

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c9f3e10b87a81d912e79c4c3ecb9c27c6ce68b2976121793ad3ff88660950bc2
MD5 40f741bca872c27130472a0fd196b339
BLAKE2b-256 ed80ae9a09c4901fa12e1f69676a0e6cc5b4b409762200f0cc8270550b79710d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 59dd329d20167f617f8ada01aaa116ec914f030a29d152182b95bc9ee3b3094b
MD5 9aa9968f8ffbd7e53e82501b6825585c
BLAKE2b-256 930139f2fffd91240b329a1072e58ed05f1bd08e59cb3c4073bade58e28e7a0f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 41aebfc7a25c7b25c50b7c88e24d39cf4242abcd1b343e641ff627af7ae88c73
MD5 cc962ada57ba1b519bc1783b875c8698
BLAKE2b-256 956f35a3cba86e116a8c1a213979fac0afc87611be5b8b0172761132f1bc9bdf

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 84ac908322877a995a9374c17a0a3ced80342afe0faf1b53db86549883c83efb
MD5 ee5f822c83f7715908f73fee88774d82
BLAKE2b-256 52837bbf8a3b62b0ad7fe8696b529bbae2fdfa1636cbdc4a4a7d41cd64f160c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3b277682fdbaa2214f74b2e70084b8b3d26ca8f14058a91675521ab0fb3548bb
MD5 40e938d12c1cc67550e16591f0d08890
BLAKE2b-256 8b06e0a97786d8a5b59f9548bd01af16a1c749fbdb71e1be24cd8e2bd91854a2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b6a2ce00f7eab75b1568ea69f97d50d9ef764ec8b70405731abd93429f0986a
MD5 5512b5f57e81566ee9bfb16ba8b260d6
BLAKE2b-256 d41aba895cd0c5a76bbb8554f2eefc5c7d6b9daf5c4325ee20271a63cef2f62d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.31.0.dev20230222054122-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 626410e6844f1f654d9f7a5b3d779d179f0dc1ab9a1d21f217147477eb6929c2
MD5 52af0eb0518a4b781839336c6b88d1d7
BLAKE2b-256 d430da3254fc07f41fd8fb1ff05ab1e0266ce5b1f23c8bce2ec43ce137d2c0cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page