Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI CRAN License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is the example of Get Started with TensorFlow with data processing replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read MNIST into Dataset
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz').batch(1)

# By default image data is uint8 so convert to float32.
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(d_train, epochs=5, steps_per_epoch=10000)

Note that in the above example, MNIST database files' URL address are directly passes to tfio.IODataset.from_mnist, the API used to create MNIST Dataset. We are able to do that because tensorflow-io support HTTP file system out of the box. There is no need to download and save files to local directory any more. Note we are also passing the compressed files (gzip) as is, since tensorflow-io is able to detect and uncompress automatically for MNIST dataset if needed.

Please check the official documentation for more detailed usages.

Installation

Python Package

The tensorflow-io Python package could be installed with pip directly:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has beem successfully installed, you can then install the latest stable release of the R package via:

install.packages('tfio')

You can also install the development version from Github via:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below:

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

Lint

TensorFlow I/O's code conforms through Bazel Buildifier, Clang Format, Black, and Pyupgrade. The following will check the source code and report any lint issues:

bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following will automatically fix and lint errors:

bazel run //tools/lint:lint

Alternatively, if you only want to perform one lint check individually, then you can selectively pass black, pyupgrade, bazel, or clang from the above commands.

For example, check with black only could be done with:

bazel run //tools/lint:check -- black

Fix with Bazel Buildifier or Clang Format could be done with:

bazel run //tools/lint:lint -- bazel clang

Check lint with Black or Pyupgrade for an individual python file could be done with:

bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Format individual python file with black and pyupgrade could be done with:

bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

Note Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs.

Note also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.0.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

If Xcode is installed, but xcodebuild -version is not showing so, you might need to enable Xcode command line with the command xcode-select -s /Applications/Xcode.app/Contents/Developer. Restart terminal might be required to make the above change effective.

Note from the above the generated shared libraries (.so) are located in bazel-bin directory. When running pytest, TFIO_DATAPATH=bazel-bin has to be passed for shared libraries to be located by python.

Linux

Development of tensorflow-io on Linux is similiar to development on macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python than default system installed versions might be required though. For instructions how to configure Visual Studio code to be able to build and debug TensorFlow I/O see https://github.com/tensorflow/io/blob/master/docs/vscode.md

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'
TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

python3 setup.py bdist_wheel --data bazel-bin

The whl file is will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same readon.

Note installing with -e is different from the above. The

TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

TFIO_DATAPATH=bazel-bin python3
# import tensorflow_io as tfio
# ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

$ # Build and run the Docker image
$ docker build -f tools/dev/Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev
$ # In Docker, configure will install TensorFlow or use existing install
$ ./configure.sh
$ # Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options)
$ bazel build -c opt --copt=-march=native --copt=-fPIC -s --verbose_failures //tensorflow_io/...
$ # Run tests with PyTest, note: some tests require launching additional containers to run (see below)
$ pytest -s -v tests/
$ # Build the TensorFlow I/O package
$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Inite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 958d23494657f3afc395869d5e0bf0730dcc42d1f59c9f44ea43178f3a22664e
MD5 05680e6bf1cb7bb301fb05df95b376b4
BLAKE2b-256 e86676a128a79666cf00d338757a489fcbca569107bde6f3a4643b29efb59da9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5ab038e71740d3f278d9a4f8f4a48e977d9301211c3b633222cb3c37bab7a6e9
MD5 8f21e876a39e9c21c657b284979f873e
BLAKE2b-256 df438e4b549dd290f4342025e1f5c5ea87e64a816ec17bf5bb653c7ad056b66a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 64f12b3c8fa09a8ac614201298c6a193443759227b1b8cc10635d07042dd2522
MD5 b3e1bbe6f56265571bb51ec764e4204e
BLAKE2b-256 59cfa929d2b1eb31147d1e89bd483817ace889cd4ccd982e8b5d694c7884744a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 12158df7bc6d3cebffb26ec59ccda4f68eccf49cf122646a30ce557677017e6e
MD5 7f11319200840c49e1ec8ded0c1b8c44
BLAKE2b-256 527e7783e8a5074d3def48f5bdfb2c50d2fd7f60c9734ff21ae0d394ea9eed4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b4fda1365cc4ab1e75636f966364f6a62eb59cb79da43257ba0a67d3c65b0b68
MD5 81abec91076a68b23e60f9f44357e946
BLAKE2b-256 8138c63847f4dc2eab9c0098056d78182995dd5c6dfcdd2413d2e1108503f2e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7fd832fbed46b96abfcc2ef66163ce3ff41951c1c6a1bf84ebfcd0aeb01db1fd
MD5 2dd5b066340979369d441b6a83ae1a4c
BLAKE2b-256 4690b2fa6140b9ce468cdf6246ad9c2e47f7ce2f8fd5a704adb83b1efdaad0f5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 aad073e05b7d396d12d718fb2a17c492efeb3984d3b582cec1ec7dd98fe91a16
MD5 edbd70ec9dd8da509de8f0a50d4531b5
BLAKE2b-256 bd2cb5c667109478fb9874b1cb761c0c1b7de08b0014b237aaabcb2be854c0c7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0e1ee7b13fbe3d48d05bfe4c0028a1f8812f40d2ee550c0f72b6929a91e2c0bc
MD5 3b576309a5eeb41452c513f2f6a987ba
BLAKE2b-256 e8bf9269fe9f34ea696c07a9954da59b24fcb981db2231d916e890b57a28c11b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a1b78ec7c1cd65bf4f0b747bcaa1ff985cc8217623f45b4538f6eb4977d3a747
MD5 f5112135a520f59bac89cf1816abddcf
BLAKE2b-256 983369387424545002d56e61ca28fd496b871b9b9399e504b2dca6211f60bb54

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3425c46f418e34678e0d4bd76e93ba65ad14a4b60c014b4290a092a873f359cd
MD5 0b85b72b173a35702cc5647f044dac5b
BLAKE2b-256 7bc5d69a6c5b5c8e55bbb21f9b7d52994031d3325619adf534b78f55d1691e6e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6dfe57a8654d52259bd9936135f09b3523c6b5363d883cbe0447172a1db063a8
MD5 8fafb9c78b0f0a508566da77ca80075a
BLAKE2b-256 fff62e002005c9e3aa5174d09d1dbd9fbc682afe0bfcabaadf03dd69240b5b07

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200617201019-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0169f494e68bbb39d767d858073bc99a5257f9fac4689bdcfab7830ebbfaa756
MD5 e6e4f43c698deff2ef6a443ec3c7d4f1
BLAKE2b-256 970557c474305cd189289a8d4bec7deaf1cd093273915a1c82b3f73191ade683

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page