Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI CRAN License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is the example of Get Started with TensorFlow with data processing replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read MNIST into Dataset
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz').batch(1)

# By default image data is uint8 so convert to float32.
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(d_train, epochs=5, steps_per_epoch=10000)

Note that in the above example, MNIST database files' URL address are directly passes to tfio.IODataset.from_mnist, the API used to create MNIST Dataset. We are able to do that because tensorflow-io support HTTP file system out of the box. There is no need to download and save files to local directory any more. Note we are also passing the compressed files (gzip) as is, since tensorflow-io is able to detect and uncompress automatically for MNIST dataset if needed.

Please check the official documentation for more detailed usages.

Installation

Python Package

The tensorflow-io Python package could be installed with pip directly:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has beem successfully installed, you can then install the latest stable release of the R package via:

install.packages('tfio')

You can also install the development version from Github via:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below:

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

Lint

TensorFlow I/O's code conforms through Bazel Buildifier, Clang Format, Black, and Pyupgrade. The following will check the source code and report any lint issues:

bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following will automatically fix and lint errors:

bazel run //tools/lint:lint

Alternatively, if you only want to perform one lint check individually, then you can selectively pass black, pyupgrade, bazel, or clang from the above commands.

For example, check with black only could be done with:

bazel run //tools/lint:check -- black

Fix with Bazel Buildifier or Clang Format could be done with:

bazel run //tools/lint:lint -- bazel clang

Check lint with Black or Pyupgrade for an individual python file could be done with:

bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Format individual python file with black and pyupgrade could be done with:

bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

Note Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs.

Note also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.0.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

If Xcode is installed, but xcodebuild -version is not showing so, you might need to enable Xcode command line with the command xcode-select -s /Applications/Xcode.app/Contents/Developer. Restart terminal might be required to make the above change effective.

Note from the above the generated shared libraries (.so) are located in bazel-bin directory. When running pytest, TFIO_DATAPATH=bazel-bin has to be passed for shared libraries to be located by python.

Linux

Development of tensorflow-io on Linux is similiar to development on macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python than default system installed versions might be required though. For instructions how to configure Visual Studio code to be able to build and debug TensorFlow I/O see https://github.com/tensorflow/io/blob/master/docs/vscode.md

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'
TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

python3 setup.py bdist_wheel --data bazel-bin

The whl file is will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same readon.

Note installing with -e is different from the above. The

TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

TFIO_DATAPATH=bazel-bin python3
# import tensorflow_io as tfio
# ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

$ # Build and run the Docker image
$ docker build -f tools/dev/Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev
$ # In Docker, configure will install TensorFlow or use existing install
$ ./configure.sh
$ # Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options)
$ bazel build -c opt --copt=-march=native --copt=-fPIC -s --verbose_failures //tensorflow_io/...
$ # Run tests with PyTest, note: some tests require launching additional containers to run (see below)
$ pytest -s -v tests/
$ # Build the TensorFlow I/O package
$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Inite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-win_amd64.whl (16.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-manylinux2010_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c1454d27c0b6c494c7a7f0b0a9fd6799c22e80ca044ef6f01800b1d10dc92cc9
MD5 2fdb04ef6c47218d214e69171468d636
BLAKE2b-256 2ae8ee42881f1465feefb55f5d00cd435f771b5c06a621a5e4f5faac8860ad10

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8fe01bf589f56a438a74d63c9c423f203ce1ab94e6e079fec760fc59521d7145
MD5 c2c55c58d769046b7669e59cd175dfdf
BLAKE2b-256 a34080f2eacf1ee522edcc117371ee6e595ac91e441b71bb3958e6967500e209

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d0eb77d24bb8f229bb3d981ba3a7adc16a647397fb3e7ec85ee9fdca7360d09b
MD5 f353ddfccd9abcbb1e85abec8091a607
BLAKE2b-256 9375728ceac12b99a10edc0d38cbb46db812a92a935bca353700afdd491f1391

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6c9c5a9f01db7b41a9ed3eda2d00b70d91938e9b4fe5a801a6dc445778c0ee6d
MD5 f9b35bc5a9ccb58c7c0d5b405e76c05a
BLAKE2b-256 21840991f878fd2fe0a51088d9602b8852bf3ee3e7977f1960426c75e73bd6fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 20457bb40bf0dd8209cd48e30f3949f3e060fa62ccffb769e51dd8c95d6aa08c
MD5 79d611ccf54b768114e9fcb8d911d9e3
BLAKE2b-256 f9ada4256cf2f992136d555115f4ec4c74931897ab20d77a4151be11be4113f5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5ff98570deabb74e35256ee3b76b06434369cdd939ef044884348eca4c9456da
MD5 a74e0a141169b3063fe0921d92ef2b62
BLAKE2b-256 0d90e2b5a405ac5efbb77fae22fd4fbcda6b570831c9827b7386c79a60d9fff1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 94e6a35d1b66ff3e19324d97d5808c42ddd1d7ae848b97f315661f73818fa54e
MD5 4b85364a06e0845deead2806a345819c
BLAKE2b-256 859246c2b84c7a9d3173e92e5c75cc7a9a9b9f0bc799422c669fc9d50e625b88

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0d68643dc2faff88faf632084c80c8981c669f68c09668d8df51879d032e02ae
MD5 9f87c1cf92ab1ed1982a8b308c0c7a0e
BLAKE2b-256 a07ec5b991696e104204a510cfb79bae58808a595ca29b284cadf57af7f1f6f2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cbd2a68f18fecd518528766d0a9f32d14ee388adf3b5d0c7517c045449536b0b
MD5 30a410dd5d4d92b445c200c740ce15b2
BLAKE2b-256 323b1d01d134f729c801543dcb5490ba0e8307f5c70934064cd2b3c90124d9ed

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 9548ef06e379af92806e2a1bfbf3ddb113cca3d4b760788f05574b79327b770b
MD5 6a32464640b7e2e5fbe7a661d5d09373
BLAKE2b-256 38b340b8579fe375ede2ecbc14f0ced025ecfdca705d8a759f5b56156e5c5a10

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b9a75ec7ec206245121435983b5a5ae02c75c840e1b5e0205f78b2e31499dd78
MD5 37b2fdbe4e436b104033642948d91361
BLAKE2b-256 8d3ea8576725d9334b5c8ab6b54442c589c8eb53c024c254a5b90fabbbd5c167

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200624163303-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 539ee9dbc54cabdd0f0c3a1431086d8c81cecfbc245f829cbc1a0f34fa0e3124
MD5 18e3a06790aff9c3afd50541e39c3df7
BLAKE2b-256 dacf03bfbe48b37ee8e68be4ce883e316fb5818f53060ccb8c1e1006179c4a8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page