Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI CRAN License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is the example of Get Started with TensorFlow with data processing replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read MNIST into Dataset
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz').batch(1)

# By default image data is uint8 so convert to float32.
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(d_train, epochs=5, steps_per_epoch=10000)

Note that in the above example, MNIST database files' URL address are directly passes to tfio.IODataset.from_mnist, the API used to create MNIST Dataset. We are able to do that because tensorflow-io support HTTP file system out of the box. There is no need to download and save files to local directory any more. Note we are also passing the compressed files (gzip) as is, since tensorflow-io is able to detect and uncompress automatically for MNIST dataset if needed.

Please check the official documentation for more detailed usages.

Installation

Python Package

The tensorflow-io Python package could be installed with pip directly:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has beem successfully installed, you can then install the latest stable release of the R package via:

install.packages('tfio')

You can also install the development version from Github via:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below:

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

Lint

TensorFlow I/O's code conforms through Bazel Buildifier, Clang Format, Black, and Pyupgrade. The following will check the source code and report any lint issues:

bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following will automatically fix and lint errors:

bazel run //tools/lint:lint

Alternatively, if you only want to perform one lint check individually, then you can selectively pass black, pyupgrade, bazel, or clang from the above commands.

For example, check with black only could be done with:

bazel run //tools/lint:check -- black

Fix with Bazel Buildifier or Clang Format could be done with:

bazel run //tools/lint:lint -- bazel clang

Check lint with Black or Pyupgrade for an individual python file could be done with:

bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Format individual python file with black and pyupgrade could be done with:

bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

Note Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs.

Note also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.0.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

If Xcode is installed, but xcodebuild -version is not showing so, you might need to enable Xcode command line with the command xcode-select -s /Applications/Xcode.app/Contents/Developer. Restart terminal might be required to make the above change effective.

Note from the above the generated shared libraries (.so) are located in bazel-bin directory. When running pytest, TFIO_DATAPATH=bazel-bin has to be passed for shared libraries to be located by python.

Linux

Development of tensorflow-io on Linux is similiar to development on macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python than default system installed versions might be required though. For instructions how to configure Visual Studio code to be able to build and debug TensorFlow I/O see https://github.com/tensorflow/io/blob/master/docs/vscode.md

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'
TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

python3 setup.py bdist_wheel --data bazel-bin

The whl file is will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same readon.

Note installing with -e is different from the above. The

TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

TFIO_DATAPATH=bazel-bin python3
# import tensorflow_io as tfio
# ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

$ # Build and run the Docker image
$ docker build -f tools/dev/Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev
$ # In Docker, configure will install TensorFlow or use existing install
$ ./configure.sh
$ # Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options)
$ bazel build -c opt --copt=-march=native --copt=-fPIC -s --verbose_failures //tensorflow_io/...
$ # Run tests with PyTest, note: some tests require launching additional containers to run (see below)
$ pytest -s -v tests/
$ # Build the TensorFlow I/O package
$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Inite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-manylinux2010_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-manylinux2010_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-manylinux2010_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-manylinux2010_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2d9930b379649e85a4e48bf5a8cee28f7e73c4e1bcb339c91a0cb76c6569f37b
MD5 8c9506d6b45c05356ebfbb8d867e7f2f
BLAKE2b-256 e231a239a60543f8f2fd6ee9c9a97bc861a46a6a510aa12bb4d3e72904887f4d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2f357f958d709ef0a8d8b926d1d860f28f3677e60df5c6e8f3dafb298937e1cb
MD5 bdf43f276063672db966d60abb09a4eb
BLAKE2b-256 c724a9a57e712a8d17a8b5dfe3fb7c04b7c891393066af68e0c62f643c63edfb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 da73037f6fa569a342b65174e2d3bb0e44f4f85033726a40374e2876e43bffc5
MD5 50158e426b813340feb5a753effbd155
BLAKE2b-256 31facb032dcf7d406ac52bb1ffef193709243eaba775c68574148d03c50d32ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 616f69dfcd8150df0c319f043c1ca01407562d401c0728a5f3dbdf24e580f3a4
MD5 88d582bca464d1b6dadbc7e959b102f6
BLAKE2b-256 ea434ccc6d13a76c393ac8c40ca024e17927de440d07821595c0c843209a6d14

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c39d72392332d731cd0f3fd852024d947af32581f35cf7330aec106570ff8036
MD5 c8e259b3d71e6e120823c75a422c1832
BLAKE2b-256 22f89ba2ad557e6a76981d339ba770dc7e886d765d6ad2c283afceeaadb7287f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 54395048bf1c8e1c69815216a50a0fd815853352a410ce2433a9a21aa2beef8f
MD5 05ce9f50005d8da34054155aebb9dcfe
BLAKE2b-256 69a57ba79350a29d9ef79430a9cc8926470158ebf354934f820e875434d9c867

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e937c8f5a48b266efe020318fa0477a7a321f6e626979b045e914dbde44e3e51
MD5 d20c0f24d2313aaec80b02293d53d62a
BLAKE2b-256 c38e4fe8b1d090352f90775b5373a1f2730e586ca4f55defa677d0a8422b37ef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e010d917e1f75d856e66905d61bd829326336df39c3686e8dc709bd6478aed27
MD5 89443c8be171c96c51bfbf00829c73f8
BLAKE2b-256 3b77e087ce2afedbf0d367907fd5aacce1463f6baa6aa01ad2b6bfe613a32280

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c455a2d85a8744dab7e364f878dfcc7da085fcd8bd84b49ac265c36ee34534a0
MD5 38a65d5ad5136d830eb9e1e7a9aa7414
BLAKE2b-256 8ba44eb61a59cac9b0a6bc54af9db21b65d9ec805803aa7f28ef16091a66c604

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 97fd3f59483a065154ddbc364609120212e78f7b94738db9c15d983097fdd60f
MD5 b8f8906aade116276e8ee1f4d8d551e5
BLAKE2b-256 d73b748c05822941fd2ded8d11ef4f1a667419e94968f720b15fed14d96ba071

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e21c6f11d14d1983930edcd143fc1b608d5d6e7f99531dd58e14ea375d25c5b2
MD5 18aa634b691af967c36c1d7ff828fe23
BLAKE2b-256 97bebcbc21ff8effb403b5b3ad8dcad4296aac500f6e7f60533ba932d2edaafa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200629182646-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 eddad27286baeb3773194cfbceeb4de9e0bee7f0f75f73437040279f80f034b8
MD5 5b129951c321708df59ec1888a3515c6
BLAKE2b-256 02625c242e91ae5aceda92d279650ad98fcbcbf08758068fd7c279aef939d81c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page