Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

IDE Setup

For instructions on how to configure Visual Studio Code for developing TensorFlow I/O, please refer to https://github.com/tensorflow/io/blob/master/docs/vscode.md

Lint

TensorFlow I/O's code conforms to Bazel Buildifier, Clang Format, Black, and Pyupgrade. Please use the following command to check the source code and identify lint issues:

$ bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following command will automatically identify and fix any lint errors:

$ bazel run //tools/lint:lint

Alternatively, if you only want to perform lint check using individual linters, then you can selectively pass black, pyupgrade, bazel, or clang to the above commands.

For example, a black specific lint check can be done using:

$ bazel run //tools/lint:check -- black

Lint fix using Bazel Buildifier and Clang Format can be done using:

$ bazel run //tools/lint:lint -- bazel clang

Lint check using black and pyupgrade for an individual python file can be done using:

$ bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Lint fix an individual python file with black and pyupgrade using:

$ bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

NOTE: Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs. Also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

#!/usr/bin/env bash

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.1.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.1.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

NOTE: When running pytest, TFIO_DATAPATH=bazel-bin has to be passed so that python can utilize the generated shared libraries after the build process.

Troubleshoot

If Xcode is installed, but $ xcodebuild -version is not displaying the expected output, you might need to enable Xcode command line with the command:

$ xcode-select -s /Applications/Xcode.app/Contents/Developer.

A terminal restart might be required for the changes to take effect.

Sample output:

$ xcodebuild -version
Xcode 11.6
Build version 11E708

Linux

Development of tensorflow-io on Linux is similar to macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python, other than the default system installed versions might be required though.

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.1.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.1.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.1.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.1.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

#!/usr/bin/env bash

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.1.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.1.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'

TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

$ python3 setup.py bdist_wheel --data bazel-bin

The .whl file will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

$ TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same reason.

Note installing with -e is different from the above. The

$ TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

$ TFIO_DATAPATH=bazel-bin python3

>>> import tensorflow_io as tfio
>>> ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

# Build and run the Docker image
$ docker build -f tools/docker/devel.Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev

# Inside the docker container, ./configure.sh will install TensorFlow or use existing install
(tfio-dev) root@docker-desktop:/v$ ./configure.sh

# Clean up exisiting bazel build's (if any)
(tfio-dev) root@docker-desktop:/v$ rm -rf bazel-*

# Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options). NOTE: Based on the available resources, please change the number of job workers to -j 4/8/16 to prevent bazel server terminations and resource oriented build errors.

(tfio-dev) root@docker-desktop:/v$ bazel build -j 8 --copt=-msse4.2 --copt=-mavx --compilation_mode=opt --verbose_failures --test_output=errors --crosstool_top=//third_party/toolchains/gcc7_manylinux2010:toolchain //tensorflow_io/...


# Run tests with PyTest, note: some tests require launching additional containers to run (see below)
(tfio-dev) root@docker-desktop:/v$ pytest -s -v tests/
 # Build the TensorFlow I/O package
(tfio-dev) root@docker-desktop:/v$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

$ docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 28dd4551835c50dbc78d884dea0a5ced5df58ee2f1399dfa38f0d103a1715aac
MD5 aee892b155dd7ac590f8c7971c06266d
BLAKE2b-256 9d38e736c38f1a182fc05972708a08079a7edace2766711c12fb29c06f26b5d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 475bf3091d8b250e36fedccce75bd6b2e08acb568433231a5b8e763f70ab4cc4
MD5 3d588e3b2ad14c59a163dd7ce933035a
BLAKE2b-256 897a1b2113715aadf5543b4eaa6541a78dd033a039815e58c766df1be0000a4a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 52e18e553018330bf5d4e250fda874476e8aad88e8048bbbb0f71a36bb52900f
MD5 89778338b235af7d395419efc2ff0ecc
BLAKE2b-256 1703eb4053d2fa6f49f13c17dc123d2b96169de181205749cf98814f8d58e92e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c5fec3df5a08e1ad50fa9d821fe3012c6d75b810b8ea33a06f123b1fe78a33ad
MD5 2a337d781be5d71266a82cd26304d2bb
BLAKE2b-256 76369e8449d4d5b9e41460b60e59c081bbfd0d5f8d59737741a69e81f1bd7810

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30980700227f4d87c76d68b22a54c8bb0b2696643cdbdb1efeea4c0ecc436fa2
MD5 a41938207c07a0b9926fc0f538e732a6
BLAKE2b-256 87caeda81ad2482c6594eeaeb7b0e8d4eec1c334237ccdc61467d41cea622300

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a291c93054102e68a9780de48cb09e18c2d35e00ed7eec0bd74790e5e6f391a2
MD5 341a7e3b302703983cd5cb33942d61a4
BLAKE2b-256 2681530d9c97bf2f7f74e8871118a04e6d5ef1151a37c28cfffb151b14b82966

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fc08d567ac86b956d3a176be1b72e4957c75d5d307d744e44642f1105d582179
MD5 278f39335174bc10ade715b655600c54
BLAKE2b-256 dc07d7a07046b9fc6fae849a3e9e0d1adc27a9557119f3498ac805e658107fbd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aa824c3ebd1175907852a3e0d3f9a0e730a9b6028dbdfea33d24e87125016909
MD5 bcceaf7aa61bf50397a5aae713d95ba2
BLAKE2b-256 3556b36c67325e90a0485acae9dfb75432757533b18a6cd816d7b137f0d5b4ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 84e84eb0390b166a57c5512e6de140a5e76fa3f0607943e7208c2b051e639436
MD5 64ee1c1be70eb729a6aacb5f371bea42
BLAKE2b-256 ada4c5e93693ed217f20c296e4ce62d8722bc94a73575af6d644412cdf85759d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 8aa77ad8dc7b9016eb244e12dbc94a230888ac667c7d9aba546097d1edaaeab7
MD5 a6472b1498cb6162f6361edaf3679e9c
BLAKE2b-256 60c9dea6addab0c8f45e0890148fc17ce3dc372f5fe147401647646838125611

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfc8e708eff93b5f8b61d42e37fbd177f8e85f388f0ff764f6efb6bab92c9947
MD5 6872e8cd3b617be6f695ab5f58f5b74e
BLAKE2b-256 faae5391830590d2628d8475841bac088e5f5ab65f57ee0f7b1c1d423f6560d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200912220418-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 02835cc8a4a4c106a6e895c251d26e32bfa342b3a700aa4b8bb1b172b5277487
MD5 622608ccf6a0a15984c6b5d2ea1859ab
BLAKE2b-256 41114032f263f6b19c83e8605db7907e93beb2ffa1e8796c3b94894e11a05efd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page