Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

IDE Setup

For instructions on how to configure Visual Studio Code for developing TensorFlow I/O, please refer to https://github.com/tensorflow/io/blob/master/docs/vscode.md

Lint

TensorFlow I/O's code conforms to Bazel Buildifier, Clang Format, Black, and Pyupgrade. Please use the following command to check the source code and identify lint issues:

$ bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following command will automatically identify and fix any lint errors:

$ bazel run //tools/lint:lint

Alternatively, if you only want to perform lint check using individual linters, then you can selectively pass black, pyupgrade, bazel, or clang to the above commands.

For example, a black specific lint check can be done using:

$ bazel run //tools/lint:check -- black

Lint fix using Bazel Buildifier and Clang Format can be done using:

$ bazel run //tools/lint:lint -- bazel clang

Lint check using black and pyupgrade for an individual python file can be done using:

$ bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Lint fix an individual python file with black and pyupgrade using:

$ bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

NOTE: Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs. Also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

#!/usr/bin/env bash

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install Bazel version specified in .bazelversion
curl -OL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-darwin-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

NOTE: When running pytest, TFIO_DATAPATH=bazel-bin has to be passed so that python can utilize the generated shared libraries after the build process.

Troubleshoot

If Xcode is installed, but $ xcodebuild -version is not displaying the expected output, you might need to enable Xcode command line with the command:

$ xcode-select -s /Applications/Xcode.app/Contents/Developer.

A terminal restart might be required for the changes to take effect.

Sample output:

$ xcodebuild -version
Xcode 11.6
Build version 11E708

Linux

Development of tensorflow-io on Linux is similar to macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python, other than the default system installed versions might be required though.

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel version specified in .bazelversion
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-linux-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel version specified in .bazelversion
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-linux-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

#!/usr/bin/env bash

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel version specified in .bazelversion
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-linux-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'

TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

$ python3 setup.py bdist_wheel --data bazel-bin

The .whl file will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

$ TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same reason.

Note installing with -e is different from the above. The

$ TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

$ TFIO_DATAPATH=bazel-bin python3

>>> import tensorflow_io as tfio
>>> ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

# Build and run the Docker image
$ docker build -f tools/docker/devel.Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev

# Inside the docker container, ./configure.sh will install TensorFlow or use existing install
(tfio-dev) root@docker-desktop:/v$ ./configure.sh

# Clean up exisiting bazel build's (if any)
(tfio-dev) root@docker-desktop:/v$ rm -rf bazel-*

# Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options). NOTE: Based on the available resources, please change the number of job workers to -j 4/8/16 to prevent bazel server terminations and resource oriented build errors.

(tfio-dev) root@docker-desktop:/v$ bazel build -j 8 --copt=-msse4.2 --copt=-mavx --compilation_mode=opt --verbose_failures --test_output=errors --crosstool_top=//third_party/toolchains/gcc7_manylinux2010:toolchain //tensorflow_io/...


# Run tests with PyTest, note: some tests require launching additional containers to run (see below)
(tfio-dev) root@docker-desktop:/v$ pytest -s -v tests/
 # Build the TensorFlow I/O package
(tfio-dev) root@docker-desktop:/v$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

$ docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 98e9624258e53bbca39e758892826710f906f0e1be0ee8d3cfb2ccb5952873b0
MD5 a0c810a57d4fac8d8e7f573661ad6b86
BLAKE2b-256 5b5b7b418fc60445e2a244544172c81790f06bc985fbe2f8cb2b09a839074b29

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 040aa12589f4910e360e4d54121a891cb7e381c4a78d6a3442401c436aa78172
MD5 f84e3340ddfc57d50ca604ea76f9b911
BLAKE2b-256 ae3b8a65dc5703ea43d2e644d06cc21cbad2bed8977cd690880611a9d52671ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 89f19b7810a2950308315c1dbc6b55e09a65aadd282b00085d7fd501afa23aad
MD5 1d0dd46ddefc877331ba924dc63d6ba9
BLAKE2b-256 8542087d68b412119226a2c1f5d1ff08622d33f28dc8bf3eb0a23ce33ffa84a7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4462f3b4cba7c27e2089c5b3b491d517f07927c83629e73ba9bf2e0696d35639
MD5 0d42c8f6a3d1521aa3f7833f0548d1a0
BLAKE2b-256 c5488411b4f7b05d71070b57247eb5a19492b8c1169b7be522918f37a677cf45

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b463f1ac24bf7ca2e450ccaef76cfa5cfa6ed96b6a583bad99ce8e186dc5fa7
MD5 2d47b4f6213d4958edd6712fa0cfa7a9
BLAKE2b-256 bfe50496c72d35e022de573964a711f5f8b61bfec883a0c355057767428fc47e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fb1d92b566df3fedf97b20dacc68a76b2e1041d59f4f091c2b22ebaa3cb82c57
MD5 33f881fc3b978a3581403212518b43de
BLAKE2b-256 637a5efcd46359b10bf0d9189a9b10d805585c53bfa260212fd730d2a2bfa1b3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e6d3979c2c816d204415079fb0b58a919ddf3a89d368e67316d398140204ac88
MD5 591cf2a6060a5c05f58a7ba8f6e44cd7
BLAKE2b-256 5355629a8fc9406e86ca857f7d2203a8c36264b7eb5b0ee1bc647d50e9e4abe1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e153b8b61d95adba2a4f35c4be94182c40a16b414c3bdd37d9a38b76420051cc
MD5 585565d3560bb285fd508243c5979381
BLAKE2b-256 e7de19cc089c1a01769f61ccdffd94c4020a69e1f097219aa1664aa155f9c71b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 86d23eec55c6684743f573e8df38b4d8b64dc2d225c078121990a01ef121798d
MD5 340f5bba7b516974f3cf7bce1b727c6d
BLAKE2b-256 0a5f33a3b9adcf1de0e6589347c2c0f32f4af03d0b60a30fdc7ad6df25b6dd29

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 0312e8a0cf21206e4a9b1ebd8156593e4e67c2d4c7b2b68d8d06ef2d3d1355fa
MD5 e30bc7e757890f576043e25fc491028c
BLAKE2b-256 1c3f6ea2eaec5fbd5bb34e8ff6dc158a00add73e03e373e642478e40a2054338

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3d1067800c56bcc65e2a6710b39b5549b9eabcd655cacabb4922beaa614138f1
MD5 3b42255c4b773a95abb03cb51705827b
BLAKE2b-256 14f4a4af6e20aa3d3f3bcda1b65ad11c7b8ab8d82b9acc118f26437c0290d69c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200917225656-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dee60b8fd853f6215b59922084fe29a0bf6200bddbfdb621e9bd868791c4e435
MD5 ff26bff8afb45656d81f0f7f10ce7165
BLAKE2b-256 be96070499ee94dbd9c8a1fb40833eb746f72ad0934811adb5ab3b0051edc1e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page