Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 92f8a7ce641fe48289a093e2bd47548d3f5514699a8f216d40fab02b5b0ef654
MD5 a2641153b7780b549a9e5ff234766355
BLAKE2b-256 38dc37d9c5d430502eaf518c7a310ddd755d46cdc9cdab614764971cb4072335

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c07e648f945e927dfc3b1a7c09738d57c838e7daf721b4a260f6b25bcea132c9
MD5 b034f980bf20dda5dfbb9115b34b942a
BLAKE2b-256 bdd6188494442695c2d2ac2c064185b656364593f8db2a2afb68d7f15baf4e7f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bd0e88d2d7ee2aaeee35b5f20e108e36052eeaec1656fcdcf063c7f1ba8adac8
MD5 278d6970fc25a90d0e89d85b5958deea
BLAKE2b-256 5637940af173cd7dba3962727a10c217ccb0a42a0fcc10e81c9e0004834c6419

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 60af210183c0623986b7039504efc871ded584bdaaecef5caea2698ce02409e6
MD5 ca97fc9117248265f53615dd48772420
BLAKE2b-256 4d1c9c85be07fbf7ddc55be78a4e21c3831f586a81ad8b9875be8d1c6af6d639

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc743e6d4f3ee3bc2917688e11cd33d9b29e5c3f4b5eb87029c9e026541f74c6
MD5 f54b32c0feaa913b8f2fd21ffe5ad68a
BLAKE2b-256 b792eed595a54cbcce6c9c9179e7a570fc3d120381a6f54cc209f4ad64ca67e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5d3ef053c60ac69196525f99799f255299d79eb31ad66bad1e78054537ff1d9b
MD5 b4ebcbede8134846bfdf66274a0fad8c
BLAKE2b-256 3a74063f09b92d7c8262b5655483387a23ca62040f1ac5e5259cbe5cfee77562

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4d109767f35b68e03c5b42550b3bc47a2968ec08a6bd9c4a3cf743224dc3ce1b
MD5 e4a5552c8741bc156dd84519dda99f29
BLAKE2b-256 6dda3f577f6c2dce0f3ef39db0057c6449db0480edeb364904353bdd9e57c50c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a564ae9371bbffe42479353b970f6ef4b9bbff90b5e5bf9c004b648144a1cae6
MD5 8b8ee98fdb62cdec548979bb9092cc47
BLAKE2b-256 2e25c7626fb70fa349d8b846583cb60cac4f3755d4039b83d70645d6f76798d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210106215905-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d6f71ce954b276b1c8c160d0d4a1d069cf20c55029aafc24e92f210cbfff7435
MD5 d3946579816637c676d6372b09ee9eea
BLAKE2b-256 2387aae39feccc396d39574c55cc3fab134d4239d207e17379bf3ef5b019f020

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page