Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-macosx_10_13_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-macosx_10_13_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-macosx_10_13_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7ce02397195bb81384587d3b1190922211fe66a87965797974eaa256d3a14900
MD5 330d6d1edb9222b69b3ea799a145b8a2
BLAKE2b-256 d23cd8b44e1034c39b1e8f6407903f08ad1a5758b29bb139a58cfe59359f3ff0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2d237055deafc38684be356b6b37da2476ca4adff5575f9942b358d3489c7387
MD5 632837757372c1aeeb5d771b7a6c04f5
BLAKE2b-256 52c72d09512b35895f170152a7293d06f20908f4399182fa60aedeee866ef368

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5fc7da0222ba4bf402a30cd3deb3e4c88caa6cd43db02bc2220e13b481ab50bd
MD5 9c66df31acea5ea4371cc14d1ee85788
BLAKE2b-256 c9d232b7114098598c36763cb526b5719d9cff895df31cb743435eac393f2b31

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f0c77ff6892a53392f67db5e44667f20d7e99b451a213bf9f2bde343f66094e3
MD5 81d7e026a135b405c832eb7be3821999
BLAKE2b-256 bc9d8549b33b2d943aed1cdacbc0e42f2e2e51c064cc34d6e3c836b25e11c021

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a8f1f347134316f4857f0428452ffd365ad9da44a80baccc01f347ce0c71788a
MD5 6c86f5b6e6bbc780c5ea71bb4a20d0b2
BLAKE2b-256 bd9d4f0a701f167d095d01d2cb5395558dcd6ad692a6c791a2726f0730cb41ed

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 09bccc4de4438a8e3cc80b76c3244b5570d9540f9b5ac20f7df75439bd737a3f
MD5 2a73fc5eb29436d09537072d781d61a1
BLAKE2b-256 77deca5f465b0190efb44d7b2b7d8b1803bf9197884af7c70220b157ed4d13d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 492ea41dc66510be7e6f71b77371c2225eaa75472288c2584c8d05af086f44ed
MD5 314491737450460806de8acc1e77fc34
BLAKE2b-256 fb26f4b499d067a653ed4cd7a7c120fb97d40b274a1d61d10612aca9070e1bee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ce3d343e1a5796ed9a17c6073f5a284939b1bdc1ba37fa4a429ad3186cfd4e9b
MD5 9d1b5fd3d06d6343139a7d354b0b4b47
BLAKE2b-256 bccc699394584279b938929cee5b6d640186a083613f561b8719378d206a7a93

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208020836-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 86f485adc61f3101fed6fda26a8658fa6f5d867003e9f900a33ecffda6854642
MD5 2c3fbe9f24eb98af58fc1cb4116dc42f
BLAKE2b-256 751f076d5c96a09855036dd3cd13dbceae6c5619255013ea43e9ba0b432a7d40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page