Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a943217de417b36a265d8882ad35a07db17007f5089ac8388c16c64cc341ae0a
MD5 337ff5c3ab22c0cc8560eef4613d098e
BLAKE2b-256 1c8e9b08bb1cc1dd32f77b6b4161cd50e5f5a25f3b0ab39222d3a40e3c59dc1b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c137cc4359771d093c34e2e816900d68a718a819962beb11049195342622b5ef
MD5 3cc9a6947e737aa0c0613ab43d0f2f29
BLAKE2b-256 cf70c25f61e061411102ec82068dca96a00b8d5657fb3443d699997c898486b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9b927c1a2b74cf523edfc6a8cba353326898d0a8f427c93da965e5ad5685a21d
MD5 154e19861d4da9ca09b6233bd3d41656
BLAKE2b-256 0593f9088afbc702c14aff09b40a51530f4be98a31cd72ccf993e8b80f8467a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a0d6237882ffc495bccc7f6c598d8369b9c9edd08ecf3fe11713fcf241d8751c
MD5 16639816778c5e584f870bb889b5e365
BLAKE2b-256 3bef9e909c626afd3b04eb230c477cda7f1c6d73fe296c1eb2080bfd4e6fa89b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7af7e334c13fa76c8a8dde7958e13e68ed50ce9f096c7613e82f24e430a99b16
MD5 94ae7f47c7786b7efd9bd9e2746dd8c8
BLAKE2b-256 53661200a0b78986796f9ea3a0b6d5118dc81b882d33280ac24f567be8a63df7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bdc4a00772fd775a27cb7849c0f2b47c2c7d253e45e2b4f775f1b4563e2b0dab
MD5 bd62df297bee302fd87a1276fe9c6fa7
BLAKE2b-256 6b321719f7d6bfa6b8280dfe7da1a27bac2816f4c3e9712f3e2ded939e4af963

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 38ded86ed4c7be942b7e7e72f64a5559e4da2211e09e9028b4727d9073fb7f64
MD5 e250d06624c5ffd9c9ec6fdbc10676ab
BLAKE2b-256 e2976f842eb4b2a8ea92d58a69c6d0c555eb9ab62c6e2567a42d8582b15a691a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95bdfb5b06bc03bf4e599e9020007a6013b3767ad80a3bfd6d986ab91272e858
MD5 3d6b1e1421e3a67fc2a88cb6d577ae8e
BLAKE2b-256 c91c89c207ade72a2b4e2d532ca60ff5d75cab245a621cf667d30c802f3f9294

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210213190023-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aeb9f25b53fa0bf64a7026ae99482fbfb83e525b3b1272de33be02ec1ecd0b87
MD5 a38476efa757c703c272ae9158000394
BLAKE2b-256 3e22f5cc2c46a9de2b8c2fe389d1670dce74ac7ff5e01c65e26813de048c2b9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page