Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210307160140-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp39-cp39-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-macosx_10_14_x86_64.whl (21.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-macosx_10_14_x86_64.whl (21.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-macosx_10_14_x86_64.whl (21.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 67fb7918b7ef02edecb4c0f6bc1fd0ea38c8fbcb223642c39e87be51824aefac
MD5 8b2e87e31f42998febae24949dd945f5
BLAKE2b-256 880caffcef77b793a821c55a30efcd0dc74b6ccf9fa538d73a6198e2811bb198

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aec3b1b948c4b8cf56f60bd0aa2373724bc2393876e82cc169e95dffa4a8d9fb
MD5 1b248d862691f56e6699bd46b36195ea
BLAKE2b-256 bbdaf2a6142b9a59d43d9fbff89aa8519d6a1927505a2bd01166035803f78991

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ad6b5acc59dda61ea0f7bedc7dac545b2416801842edf988c2fb36ff1010b793
MD5 46ee30b1821b25530b30369cf59cfcaa
BLAKE2b-256 2e025a577c58ff26b51c212ebd44ec07830c30830ee150757d12279e785558f6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b0ffb80eb82ca7a933b8807ba92172c4c395607a3bc69ceb253c752b54b90594
MD5 0982412170fadb1976759f4f88fc223c
BLAKE2b-256 1bb49de040e6f6fcf633350590da4dfabbca0593c340d745cd07217993128f42

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 59e62ccbf90bfa3a711cf1bc03f990063e34b549736ab688779537beb2b39f4b
MD5 c5abadb5f142bf00a6e156b22a0a4c9b
BLAKE2b-256 e6ddff6bc814808f1750e8abda151127cae76a903f9928ef63f102f772808576

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ad48dcd503088867c41c3fe53b8b7840d0a94f73fc3a7ef45e5de6142006bde8
MD5 30081366cd66e5a7a717c39d9dbd0895
BLAKE2b-256 521a3f4a254b08c2de29b143be833bbe4193913045a9dea5adc5239e8bc5dc91

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 711332f0ff58918ec2fdbe267e0c0cbc9cf0f6ff43b86f396c3daf6072ea0b85
MD5 350716567e2dc978707972a8325de45c
BLAKE2b-256 aa219710b54dd6425b2d61ffc8c298e56d57e65350c00ba763e120579eb34823

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8a21965770b7bdd7acd406cedac5d55ade6c6548b9371b44193dcfba0f89d881
MD5 1d2587407de2a05841697843e16accff
BLAKE2b-256 df60ea9e91574066473336a546bc3484532206e10b46f6b3cca9148dd0a5cdbb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b3ae82798fc57fcf8aec2798fc764f6ec6a75f9311d856cab93f329b0b293d44
MD5 de032ff2de4537b9ad2a8456bb0ec877
BLAKE2b-256 d57ecd9c52341d050a7a5b6da14b3c97e1bc33971d861610fa97467928e30856

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3e6814dd606f1d7be122c55aa6efbf70579a48913f5ed48284b9b6a73fe0d189
MD5 d4f5636242a19320a2d4d2283a5c9327
BLAKE2b-256 0fae9c58bf1df49baf18303a4039ca29d5b518bd8d9a7bc30a528be142073c3f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210307160140-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 61e617ac2fd5866ef7ccf17dd2fe29604c4827d94021d40e5cd934c9acb501c4
MD5 7a904cb1845b92dc27e39ee44155b2b7
BLAKE2b-256 43b2b64a1127eb391ffbe2b31ebd8491d7c32a149545030acb1ef34ec9b5c90b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page