Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "http://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bce454b5bfb8955592b6f84b5d98a4247e6fae166d11d1960d2646128f906150
MD5 24ae072ff5b48b0a52fb5c98c3560fee
BLAKE2b-256 af6041323ada219712a6a8cfe62f4815983f2576eb291adcda838286675c90c6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8a4c02fbfd3f9e1e923400993ab47c6e5d91e481ed7c99ba818c2a6cdb3e69f8
MD5 131983fab30bcf6c9ac351af6e91aaa3
BLAKE2b-256 b0da93529f53422324fd620fc51a739ac21b864d263ba5a543a7e0d83324b9e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 33514638c0771b1a5be59c1a33d33bc9aac1351116306333fdfa4d4f9aae6b20
MD5 4a687917f623ccac4c9f664040309083
BLAKE2b-256 82e44ff3205da8d11e87725520f08069b388766b2805e04eef0ffd4ae02dd0fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ccaca6a34d89db6cbcc4117c7d347828ce847cfd75b183b1378415896df298ea
MD5 52982f0983fda656855c1524734f160e
BLAKE2b-256 c7fd5d3bcc01c82f99ba915b9f0b978c99746b89c7e9f90dfa35a740a19c0582

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 14d6975d3084e4842e1d02fbf873b9b91bdd98dec1900d31971dfb1bf7201e2f
MD5 6706d44b07b45c867b81da0b8f4acd9f
BLAKE2b-256 fc5ce35a0b5bbc1fe5ee1a357018a8f4c29a462ea6441ed277548ed6b405e366

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c36dbcd6d362fe4bb02b7f046ae39ff3d71961e75d4613b2c2d36dbb3c4650ab
MD5 8736df645e41257a70a59eb678a01e13
BLAKE2b-256 a59ea3ad3e6679f3b2704d43e1ad247bebc503c828dd57e9dad027253eb976bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7e4443c4871aca346fb9fb4d9e4fa9b3de3daff87023229d6bad2ea4cf11cbc0
MD5 edd6c9daff6a44abb0141b091c3a30c5
BLAKE2b-256 e0fdd81a21b154dddf7cb8def7c8bcdd2d254bf8f39d5458b1a165fe25152e4b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 df551feaf708ebd2d2ffe0780fb44d140bf1bd448b93c5d59ad938cd88bda692
MD5 f4724db4e155268111d478549d7d2571
BLAKE2b-256 c1ef9f3ae386c9102314f3fb6ef255acdc864429fe8a01c7536fe25dd251f60d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cecb07548878785201917d0308e49255b206f3217e1ae1db7bb494efc2adf0eb
MD5 011c1c42f48d5b3a3df6e3a79afed463
BLAKE2b-256 5e67591782b3d7be6289a57bed3398166cc07148347c3e1749b2bb3210625adc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c3d5c844f92e9a42dfbf882b263d34127d401333d32d3e7accf10ccda7fdb537
MD5 6584ee394f40d36b1a724d8bb8e50dae
BLAKE2b-256 5fa35c492a0af544b24a06061608ab7deac8492f4007e5e3e004b5b6d322174e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62af447fe6530c7616ce9b833fe8cd029b7c326f41c842ca606eaf6716a1a5e7
MD5 be41d0197aa4d1fc7799beb3769e5563
BLAKE2b-256 d53d60f071aefb9cc7c26a9d1c1a698b4216755b1d9cc7822259157f9819d667

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323190822-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 73ac8bf2ac35996b33103da30ca4cb2165084b76c70241f707dfaa6d3de66194
MD5 286e8005c105217fce3ff06b9de68af4
BLAKE2b-256 5581a06d8d8f9de387e8fed5cceeebf2db66e30a9d4998e199dcc06a70de43a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page