Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "http://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0d9b45d4a906ca4291d8f70fbb351b336c16f865ed30b43bd214a664b8da09fd
MD5 15ea92c70b16fb6db1ad9952b998be05
BLAKE2b-256 8b162364682827fb04f38ec593a10164355457aa15b2895e7d37e5d833235b62

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 89a5e876c4616b548d8916c812d51e8c20712b8513cdba576c206888f59be3c7
MD5 6155cd249610d9ccb1ecbad866e967db
BLAKE2b-256 fb04650b62a1bae60c1d7179dd262a24614061244cad3d796936a9aa81f5c6f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 879b27dbf93c38ad0f6c9ffba9a8dc3bdafee79abd794b994edd6e2834764576
MD5 61eef16e5de2fef4579d6edc8d4d4a3f
BLAKE2b-256 2b3eb2bcb3f1792a62171b07c6a1e563885e3116a91c3703bd1b3a00e2ed7244

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1eeb327338f53ea387f3e3413327853c44ef0b1c65682bd0cbbb79999cc4bdb7
MD5 d26256176b48f70a1f364b04b890604c
BLAKE2b-256 9a3abf47d9d49388204a80d2defc3c061f9dbad36c69a997cff35ce0798f4a77

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 45ad6410fe941e6e17880d3ad76e6c7ef3f2c3e5a5702a7748b1d97351abff2d
MD5 a2cef607a9811a19e70edf970e1b45ee
BLAKE2b-256 035e07c78f72dfbc75855767e0fa9d8b455b2ea8fb479d559e6c7caeee58c410

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 10052eadef76d96ca3cb76d9212dad542d4efe56e07bbc00733824bdc3713bea
MD5 e2a96500373fb021ed67a30efdfbc3b9
BLAKE2b-256 9ccae1a5e9c841b02f0e3c9c55085b3f673864789a9ea002afa958b133cb7d95

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fb2a65d1289075d6b4e784f86e781c729ce86d9b1dee69d9ff1297116cfeb332
MD5 04c601ba07c62e9e28cb06ad8f0f7d7e
BLAKE2b-256 656b3bc9574a0ec5160e2e4727f378b14375b67a079e5e3577535bdf4007aa93

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4e758022e1d1766d0616df1c7e9244db50ae5235bb11c9d579e9d0af4e81bb65
MD5 7e64a77d6bf9e3c8fb5c5c9c2c9e4dce
BLAKE2b-256 4e6da94a8c8382b996a26679d726bbd3e7a2a3ad84804cf7f703cc70145d539f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b93d5bdd797440122dc536a18e5c88893b7c1817a7e52b47fa477fe48891b334
MD5 a390debee3697b51b8bd8345c5920196
BLAKE2b-256 c370e4087e842830614b8311e45dbb878ff53e7fd81a24294f6a46dba8694326

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6da021d7c97de8b442b48247f198d45e03aaab500a907b64d8f33fa0eb577105
MD5 a66e623fae24233f825d47c0af4421e7
BLAKE2b-256 7de0fd1d7f78444773504dbc907d7ef775311dd50ab9169a043c5ced6b0922ff

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9aafa9b117e65b18bf0dd2406ea66c31571c2ea5694f70335d7f231637b81efb
MD5 f395d106c079e8e70f66585aa177b36a
BLAKE2b-256 a92f76c778239879baad1a98246db5f0adc535e6f8c67cc7dd2d89a2334c1b4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210410230448-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 740079db50c4a2ecd912775b6e19c64afc01858cac8c44be3de148abad193e0c
MD5 f430a005b57f7698a9ad965799db76a9
BLAKE2b-256 7e30520374b22f50fb754aea0a1a5f7c05d2975cc4865d059bfa8151f4b15a89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page