Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f6e47e4f59b03dfd987499b0e9a78f209794278e94c94c0571c278e93dc7be7
MD5 949c7f5f5d98eb463fb779601eed5575
BLAKE2b-256 effeb6d1b0ee2bd8569370933a34256ec35fe2e5a0dacdd8f9c804d3737eb2c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7cb2d51db3a9790e56155117bb479e3d81257849a8bba37e9019723fcd2c0637
MD5 1d1c49db24b0470501ff732a5dcb2e33
BLAKE2b-256 36e9f2d3ef0badff183e96b269468d72d3d36862023680c2b1b40d7ffcc3d259

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0a4ba2e0c4e4ac6454ab3d0ed54619d95dd913075e92335a50b1317b810229d9
MD5 14281eb71ecdbe1d96c7d49cdfaac9f1
BLAKE2b-256 f4d21fe3e66ad7b7f91bb93a00212658d61cc756f75049c2d29feea79ea9b899

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f4986ceab6b0ed9bf4c027bb1f011524d2341a6dfe479098c8ef0fbe95dcd0ba
MD5 3cae4b5fe6b43b284ae40556c8526a8a
BLAKE2b-256 2f8dc593a4707f5ccd3d5709ffd2b5e1ef96a046000507ba05617fd4a14ffe68

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 af649bf827b7d1cb135b024a804bfc3f01360a02b36caf68634fe10a334b82a0
MD5 3291d6f47c2b6c80c36ce38637265d28
BLAKE2b-256 453f556a4d8e9465692f10c9a5e184e16d80b78cda7bd837a31c784721747fd4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8134a420953311faf18105f6ef3c7a9bffd18e91da0b13dee1a38f83e37cf0ab
MD5 dae2a0e9e69438f081866b8531e29976
BLAKE2b-256 d5f4a6f75766b443d853cfd2671e8d69d2cc44c4cecb20ca66bea7efdb31326e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3015a49dacca35e33528880f53f3fa3386aad39c4235b1dad5922a706f476ef6
MD5 3d9c9b42a4398ca202b9cc18afc6f93c
BLAKE2b-256 ae9993e0a9583c2078422e6daae9ddb7913bd9e8d4c51bcae094ee5f0b96e8dd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0cb31afaf31df6387adc41d71ea90f4090302a762a7de6a264eb18c6b177b135
MD5 2253f12ad0c8171d391c9b4f8b5c3990
BLAKE2b-256 ae98065d3890172775e939b434d1b7f391d26c742bdac4f9c5609867273eb8e2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8b197bd3d970a5fe21b6850e04a8f430402e4eb9538fd4a7935db3f327898b58
MD5 e4aeeb9628a564aa4d778281a4707493
BLAKE2b-256 33756fed4adae16440bae7b85b3078617315c4082a9846af5cdf1d29f147d2f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ae067dc6d9adb89e373ed1a45424be8b95491e78692af5d2fb3606d3ed198502
MD5 d403cc8a61a34bf623425cf8bd75504a
BLAKE2b-256 41b7017f63b784e7ba965436bdc857e69c69c3013d71599a511b37fbf20dc219

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 48a50ceba8ef6a82948cf4cb096dc703afe1de21f1d9eb445c180f9bfb53ea22
MD5 3a6010c895ca06d121b839be2e6a8ba0
BLAKE2b-256 8547a3cd66e23d0417b07c49cd544bae4c33c92f0aa193dfc34c690992d85e23

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210424175913-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7faecd716128ff5582879c8a0dcf07779564e359145af6a906ca291e180fe28f
MD5 0953991dda3acd6ae56876a800754a96
BLAKE2b-256 bd8834f53101b7fc7fe5840e8a13fd42f4084680258e0f651b641274190089b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page