Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d5c13de915600507b257ba6084b4b3562f0a9648a248f8b656cf4d16b2122c5d
MD5 2d5391db707a6b0d9a492aa89fa26991
BLAKE2b-256 d0ef6d4dca933c06525d06b2500c31fca3deb18cff1ed8be55087d793a08157a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6665289ba8d51127a606e494aff764b35c980abbe205c31d23e002624913f9d7
MD5 14ba7ca6777590f01f28d92a994e7d9f
BLAKE2b-256 3f15a87934c2778bc1920cb4394e270277328caf5374df4a5cd1f8b3c3a415c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7ecdf5abd52b7404cff0a1106d490c48bafe092874fca9e4767fb4845fb77506
MD5 75417b0f374d4dc6a28498a96b241220
BLAKE2b-256 8cdf52f98f1aa8a2452bd3b53f3386ff80cab330cb75007acafccb9dbec7965a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 af7aa31f58dfa3cf4fc33c640d7e87f9d90cd64f3a1a240d68d1a0f5dcef784e
MD5 61f65962e2e2b34e440aa1c11adae453
BLAKE2b-256 deb2278790d24722b9a2adf83029c0ea5b895ecbaaaea023e311d6b2d153dbc1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b69a48eaf27a48152f8f647118ac0a810ff273919d33abae3b64d088c3e70226
MD5 51d95cfb420fc141de5a564ab4aad90c
BLAKE2b-256 9ac74fc09b0dedf207e1a0b074d80947935c3f0689f31968676ff16c9f051739

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 794d2269a1ca0b521ec14d5275bc992a135385a35291ad8cec201b07e741ed66
MD5 4caa860f50fca0bd1891ae55982a4d5e
BLAKE2b-256 60c93d22cecc877d853012dea879ee58f155166552ca8745f24bf7fb2baca461

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 81dc69109c125a47ddec4afb5febf01ed967890f5499b3bf90c662acee186356
MD5 35b49e020361cc4b3df2a61f7dbd4e8c
BLAKE2b-256 b1c4a9d6228f20e42b15b8d2c1412d324c354828683e41f3ef1404e44d201ae0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d862b9d4c475fe067ba49e111d50955b9566d8592ca1208fa5547ff5d8b635a9
MD5 649389dc596006fad2dd5b69fb576c50
BLAKE2b-256 da8cebab1c1b965e08b3e95b6ab5551e244cfb57dbdd2d703bf5a95f0a0d19d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8052f50dd6946001d1d81ac44c0c4efa354f8440de0716e770bd5c92252dc010
MD5 9a63c2194d5afbfaff81297d34b4e16e
BLAKE2b-256 02e4ba156202e31562b68b0ea57b7fc706345dfa8359992a2bb67d031d977a5d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c10b4288b2277baf7a47eb0e4fa7860c5bdfab4e9ac10fad4f5f2ededefea369
MD5 21fb976bae155b4825ea96eb2d31727c
BLAKE2b-256 e7881c6c7d28d6807413d93a5621d3a8dec9f7474a2d3c4a997ad505a6ff09a1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 21db3c1d123a425d59bf94f26d4dcd8483f200287d5db3387553b1a4a039bb6a
MD5 57de1c6aa9d678f59ad166949a15976c
BLAKE2b-256 8ae7b31b9eae0f9bfa0a917877a7084650b8ccc3331a6be0209e7756ce1de94c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426025327-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 653342188eedabc3145ad281e6d71dd8ca817fccbf2213f14974ea67026e525b
MD5 22e59b04a907efa742b9e9ba1626d987
BLAKE2b-256 72c420602c6cd955edc49d7ee774c4effbedaf4546dca64c6b7ebbcd172c91fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page