Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 22cac1e6bea6b60ed0745bd62789786c4c5e540623cfec338ce7a9eed132f609
MD5 b646d5cc5c68830d573df61cbc9643ce
BLAKE2b-256 13df261622c737d3a78c268a7ff44ced60fe31def0e3ae07541798afe42bded1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 afa75b8c108ca5f8452ca7ce246f47295a99f88527f4e38f9dfb74ebb90d0359
MD5 4407b79a4502c74cc78eb95aa93eee16
BLAKE2b-256 873ea799a9482304516c69ef28c17ad1d79fb779e1340f1b99c0e2f4b9c5580a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2a0adff5ea20279e13cc989ad36c69e79433d5396a85d0a2474b0013e6ed335f
MD5 0a01a9f188e3e1e58f0f7e1467ba933c
BLAKE2b-256 1178da90fca975c53b13528a6e4f11e6b1777eb0b8eaba068f9853d7c051edf3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f5baacdab0400b94205477b74f60a23ed4346c16d5725dc8c1d729f878d29f88
MD5 ddb8377a328865ac860db1b7df4ad622
BLAKE2b-256 078de5c16f36fb746aa7c95542e09f21a86670bb857e4dcac65d0a583cb68daa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9f9f3bf6f1d794890c2ae3016a9d548b9988ed5ca06e013fea19d7e8eecf1204
MD5 437a88e64e5cf3c13fdaa03e53927941
BLAKE2b-256 16f8c2b13f20753618ec19a30df50e32c6563bc8a94538baa575c1a967538abd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e74ca4c06dfed319e42f4c9b27243f7e84eefd4686eea543fbcce712675f4b3a
MD5 105cc26bbe347572313f7df429777dfa
BLAKE2b-256 751485e26a38787954515efdda7302eadfcce8b79b84e13b13c81ba8533bdf0d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b44820185c296f4b9c6e68e58bf2c876b8c3b9a697d147c8247b2bf43418e2db
MD5 ad198008ca34530410067ee8ee925cb7
BLAKE2b-256 32821563080c1eacad6358696031a10ca8cac663a7953d47b22579a487fcf923

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 532ead08668986ffd7ac6973654c5c4b5389d5ca08d8234c9fdb0b71516a25e8
MD5 1b752cb026c341250428b3c0c897b321
BLAKE2b-256 34c8db250d50d146be8a2c3f950ab2fec95a15ae084b24143bfeeb343da0c92d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8cca130735a7c3458d1e59d918b30aa13356ee068c53f2337889afe5f5e34a38
MD5 a3d5a35f479f4e72024195fc676d597e
BLAKE2b-256 872ee570a05186f5415c2e44554690d224d7c148af2cad710df33eaf9063a233

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ec0a3769bb71b140ac5cdfb18ff8c035533048707e82c577a511391f5f3597f5
MD5 235264b3fc9efc6ae57fc54f15e5a26c
BLAKE2b-256 ca5742c80e5aeec8052ce0cd0ca7e357b0652875c92c615f65e693048dc97301

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9b8777fd6602da781814068808f85f3f82bf4dcd35174c1928962a8e26584267
MD5 b44543fc708d3879e9b49303a4f1d3e1
BLAKE2b-256 fa2009c04e2cbfa6ef577b973ba181ef91876a79970fbe326f5a338f402bb332

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430033931-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ca5757e7fe4b30d245d0f9a24103d13f757a3df64fd68292b6781dc346b7b5b
MD5 1ff99f8f808f3d911d51980da106614e
BLAKE2b-256 8911df9ed56bf136e7775d281028f9c6a14f67da9ae8cc030298b1e1092b1e91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page