Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c461f02b3b0744cfb2b13f82adf727e0dae68bb5b12aaa29df76849276407785
MD5 632bb012007763b1e6e38ae49fb75a55
BLAKE2b-256 4593cd35dc9a48045f53d118604550575e23b1534fcf62d4083eb4922ccc3e34

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d2b7d532ead7d078a56fd7c9ec91726bb4c50f1ac1e9ab9052951eba0f4eb10
MD5 bcc8f95e32158c97458a10ffa3c77be3
BLAKE2b-256 ef1fe2325854f348bdf611ccce5050dc7d7d12f9152d8562414444445c39d9b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 60f0c4f4c1445b4f53a5bc397731d71036e67762508e4d80ccb5799723497407
MD5 c77430e848a8d3fa53f8870f8357a2cb
BLAKE2b-256 0e8e01a10917bbff1d8c1cba63f3d26f7ff7f2b3a918f38a95502d2568dfa823

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 af33c8fa0d96aadad8fa560ae90f0a404a76d61de40a5b85b26bd3da7ef78b46
MD5 cf309078056353204f5072dae1dc9627
BLAKE2b-256 45c1a63c9c89d50681edbfd594a1914ad5f684d665e5d776f82c5c7d23aeec64

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 90e2d2f66401e05390768f838127d5568990c049f562f3551be41fea995014c2
MD5 f900c592e7a1ebff5bd33651aab86e8f
BLAKE2b-256 d1f5d14b40a0905265a87d75a9b368abe8cadbc2f7bf38152ef0f446819fbf8f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f8d1f52e00424d9690186c96de96231a85c369717f3379b0aa6d53df74ff6dd5
MD5 9eb67e4994f88ac8aa1b9df2696c6992
BLAKE2b-256 5acb8274d22ecdb34ca7141a7f6ba5652994964a6e67404e002fa5b95e9f4b94

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dccd841d9436e96d5d34163f07e225a6bd318a9aacb8c5a62a9d7df740857ca9
MD5 52876755313e29b3862996714e5e24ce
BLAKE2b-256 f94f69c634f7573a38cdc666e56fd29625de288c7134c4d23c43378ac6d44656

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6ccc36bd43b39aa21c32c81b03430c13cd442da960f4ed050a865e5911197e78
MD5 4875650dd0e5575277787b4dde248c4a
BLAKE2b-256 5c7336ff294126a7e45da92cc48ac5e3125d578111659d360d51d620479ae210

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 47281e29b1ff4e1b0274507fdb48784617270420f25fec9b2fccffabec1e0fbd
MD5 bf691bcc93358cd10faf7fd28368a9cb
BLAKE2b-256 f0dcaa6df30bad87c963d835108e60780350475bc881eb370aa89b9f04db8b5b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d25c5b0ae1ff00d0c81fa9dce1f361cae786649cd4358d7d9f5d0b531d429db5
MD5 1d2946062eb134dae5bbd55fa0235f75
BLAKE2b-256 1f4636c104c3255e1cadba58c4625f36b039d7c7541fecb7a0e4256fea265b2a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eb8236c294d0b7fa9ef8f83794dd1b86325a6e7e9cc01520c8e6d43641f19ae9
MD5 49769288a4f2a943ed2392e960abd297
BLAKE2b-256 a92abd26fa25c6a7c441b5c77f6dfecdc5163d4f712f1f65a2e7bf223c8b18ab

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210430142411-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 04053bf29e1ab53835d43ab284f4fde6c968bd54a42121e0a7402b582b8a4889
MD5 17bea56c9eaf3b0483e1a1f9f4aebd2d
BLAKE2b-256 db73d9f8c5bf56ca5ad2e1f263a40ddb68b1348c8617e7115a559ccc53b9c90e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page