Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fe85e1a37a4e920bcb91a34104c8e354316ea5c68a329629c2fb431704986d9c
MD5 b67b5fcc3887bbfa41c9259d1a3fbc7f
BLAKE2b-256 25b6ec9250b88091a0a5d543885aedc1adf4de8ecdd9aee9c6eb827fe0df0d5d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c63736fe1e1e77921721923fb8a17d2eed2b66a9d8620dbcbbd8ac3f4a94b593
MD5 d13ac0db09b6d8e7011fdebaf465e42f
BLAKE2b-256 802ba1134c74131eb498eb4a5a4d7c09f2b9935a8e1429b190925e7f3b46c1cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 956cd50c225d81afe22124e7484d9877f87cef832623cc463d11fcda051d67f0
MD5 b09734b751be214ff3cd1ecb7d58ec70
BLAKE2b-256 b0e2001ec93b82b744abcfc1b5d1fe71c655c5f67e2db8740b8ea4a338417f91

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d3ec62acae9e43fd211d6b3ac1f02102273c28db8f140cba85255a669753a25
MD5 0165ef8e3b8ac8e08cfb48c077da5cce
BLAKE2b-256 c6f671995c85145e1f5b2be5b9ae5fb96a15f365942914998f6dddac1af7c7b0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f3a350ccd6b8a08eacc4423883376998a314254d5399d1e679df51c477fc249
MD5 31ee6512c64fb1ba8f15fecea3919d8f
BLAKE2b-256 0c8cbc560c4abe5d59c648d5b269020c48a6b826a55afd16da90b6e4d839e3c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1714b45b44ce31343bf2b9cbbaf6a28c4927973acf184a7ccd3ac7aa0e633d79
MD5 0089c9cd1f1715673bb7ba684c5ccf88
BLAKE2b-256 80958f66d51cbcf669f4afa72a6c1b10e60d97eef7c1aa1f48c14caf035f2ca8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 df1e616e9e49b56729f17c6455d2ecf494f60675cbc013d7a441cf8217340298
MD5 2583825f2f2a387e6d8b9505a58f4435
BLAKE2b-256 638ce7732a6438989b3da77eaabcb98c88a9d49c08a8e7ad6d73caef48da9039

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3f1feec3cd2e566363cb2a51b303374d8abb6bf3acf3809158d962eaf7ac0c8e
MD5 213c52082a09849a371f21aa7d37d707
BLAKE2b-256 52199a736cd5bee06781615bd1159e22e4d449cbdd866c4519d7964871fb782a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 187e26ae081a68853567b663611a154f5472e8350d581d06d56dfb35a6ff2f8f
MD5 63f7422b9fd637d8478b756d81f76790
BLAKE2b-256 faf6cc20725aa660e0450999c146a059d884988569d0f67a86a2cfc4b420ac59

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c8a27bf2e1278f118e82e2f162593831a73f5a2e7f1d5aa45e61994f938ac8e1
MD5 876639e5f78a3fe304cd9cd1bf911b54
BLAKE2b-256 289bf57a4b1f49f963e23233599d1084e71f23ca26ca6dc6c15a6b6b66cb8e8a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 852f8f455b175177fb16383460c6fe52f82a867aa85489578e402aa929c30aa4
MD5 6dce1fe95463ab12c432ca49bb125059
BLAKE2b-256 45878085e027732fed757516f640e6acc282115174afa40d15f6cafdc4427049

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210503134156-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 01b45f84131c9c1742d57a9fc94a47398611d1ddecd59d387397a6a961bc29ca
MD5 a5eda7b382e72c570f9519d61ae1dedc
BLAKE2b-256 7e28280962eb7ce194d8cfa5de28d583aa6ac60e02c5210ccb9437ecd7f596dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page