Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1c9ac5549929f18d88e00e18a62bb8713083c6edf952033a1e72bee2e06e3990
MD5 921a802a5b44b1dcefba065ce24f984f
BLAKE2b-256 f05d95e608e6f3830e69b2a823191142219d158ff00a195281f22db5ee175b4d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba4419ba815034e76e0e689f94cea60690302632c447fabce525a0c8447ee3c6
MD5 9895dd337d60a55e2e81c1db7cef5fa8
BLAKE2b-256 88a72aeb31c83824b1d855d7afba1636c15f37ae023c1c3f0aee7ca01c4ad742

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3bb9282d193500e9a1dc4773b670a4d43f92388d760af5ab774f61cf3776a9ec
MD5 864023222859d20fbe93dab3c343398d
BLAKE2b-256 265330cecfd0029aa9f6a8605a363d2a8b69e0d06ceceaa8db45142ba21bbc94

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 03cff1c585e76e465ad46c8892e8a355783f4326d8b246ab32db0269dc99acd3
MD5 a931291cb26637c731429fb14dd3f859
BLAKE2b-256 ef49088bfa4f0fa3a1e93b95000ba0fdda7ec2e0daeea658fe78bee73fa7ed4a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 effdf2a84f45467bcdcb29e4fc3bd5544af561e7289a5b2227f70726d281a4b0
MD5 2c0615c474e841e45ee7dd50a63914b4
BLAKE2b-256 1c231573ba469ae24fc21debcdebaaed0beec7883c2caf5549b12f353d407369

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ea90b2ffbf26351cff90a2e8524e3107d51816d1230f25400bdeb57188f8f77
MD5 16798978fdea5eb8ba9b023508683084
BLAKE2b-256 de52d5508f07a7ad9d09cc9ddfb49cf68b3a76c382f555116e8b8a2c48a08b62

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c9245f72c209513f995aa04f48c9e0b5157420172e29b7c82f932e7ae26625ac
MD5 f6e25853971a248bd5cd21b931e868d4
BLAKE2b-256 630196056e0e833311c77a337656a91e7720f3f48a993618d83f08688f5f69ba

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2b64c694dda03e6de9c7ef034a3cf517c4b0952be3f93d3e6cdeb8cd06756525
MD5 df95a176af883f06693d0f91211be3e0
BLAKE2b-256 036f2a4c02078dc7f2ae166be82f9ce88c99b4fa58a284347a8b10e044de8ff3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 766b7f00c98913d207734d6d30260011f76fffd306b1a04e61e6967e6cdbe743
MD5 8ead82b69ea4d357aa0e76ca1384146b
BLAKE2b-256 984bff93cc1686876c50c9b252706b9180bbaa59b33cb0a19025eb1236dcae81

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc529eeb771a3af1ee5363d817aedb2c8d2a463eff4241d1477b5f6126c93fea
MD5 116544d3884274146706ffd2356b8ca8
BLAKE2b-256 39ad3e889e301ebc1d282a14674d8249aa036489c112cbd59bb3964e4fd218bf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 89a3df81a2d68f112c28ec28dd8a0f83cead725300bd534a7096bf71edef4f3e
MD5 753168bd14eda8b868b22524ac93a110
BLAKE2b-256 2c88789b55c16eba1d20d3c098996bae7fefe2a783b635e881f3c6554dcc7c54

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210508142358-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ea62fc14c20fc84ca915787e2e451038be24cf6d9fc2c25194aea05a81a031bb
MD5 991852de0f4bb12ba1ce2498b8885b37
BLAKE2b-256 d9ba7099d8f473860125aa9d41916dd77039af7fe3babc4849cf71e3763bf42b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page