Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 84bfacf3a8234582957acbf9147c41410a86e7bd782d219eb224a518d321c026
MD5 5464bbc7c96e11acb6681218b5d18497
BLAKE2b-256 39554bf9c58b00f5da6c839fa94462e4bae9c7b5103aa5d110a7d138cacd8601

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4517e2f16865b4bb2c0cd3daa04c120ac6c82a76a3b334a6c7e9b25f19d03847
MD5 907b27684027ee9927f5248a6269e651
BLAKE2b-256 daf0054f800e65b8636001344717d2372d51c8a5c30459e3bab03c108d1baffa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3ef0737c826d3fc8a4039c4d9b7517a1df08b6cee5447e409e7651a7cc86ae33
MD5 63ad7d1266d9f822612a7428696f4627
BLAKE2b-256 363638a90ea47e83e266640ba8354f2e8eac8d98897ded16828fd1b01f017d08

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a9d655937cb6de0dc3e9f5a3d5528d1300fab957cb51e0d6b9a284cee4f50388
MD5 48810141db8689da67ea1f961412e251
BLAKE2b-256 a77de9163574a6774ce6618f85828b2aa45c1d50d1f1fa2cb6fa13643d0ce547

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bdecf82e42803d9c23bc8cfe2f3070a9c626e741e6d4a8b1fdd36ebd388f5e61
MD5 377f3018adab290f947c429af98f6c3f
BLAKE2b-256 c6c985fea2161b3fded75bf058c7311420a57897e77104a5850ed6aa6a17b4b2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b694ca7169a04fe9fbc3df113d9467c4d1cd9e0526b5eefc5d07201550ea8ce8
MD5 b29cacca627a877b1860fdd17f32079c
BLAKE2b-256 78a24069ebbe963a10bca36af3e3d231abf9dfe3e0200bcb0b75e1c48cc2a505

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 aed344afc2075953ec461a1e28b2c00ff1961d2618f176fbf555e7da8becbf66
MD5 a232b0f33f661db1d256dc478c7763a5
BLAKE2b-256 3636acee7af2aa310f3eb49b094e5bd00fb45ac0ad3d9d9d49377042b849637a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4717235c9996951ebabb432898be4bf4d32328142c8cf944b0d4627d894400fa
MD5 63d646e39dd2f34a5934b96b3e6fe5a1
BLAKE2b-256 de55921d1187abf33d2420bf1aec8c7645b5e71936fc29b210735c65a578a175

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 135f90cccfe21d36408d6f34ccfe6378381e8b53c044daae6f30dc0718313034
MD5 7f8fff021b9de21f6521120cfa2685b4
BLAKE2b-256 2758a1efbf708e9d22ccdfeb46d09bedd36366bf1b161c3172851daf8e2fe516

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4427199e19738f2beed867e3059dd38463e9a242098b1171c21d70d2e98f03be
MD5 d46da090ed820c3132e7dc21c095bd72
BLAKE2b-256 ee5ddcdfc812812143c1afa64d329779b7c707705a73f8b9a0a8902706788b1e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7116787714d4b28417a898ca2414d96a2ea9096746d72bce7e02a62a3d0a6989
MD5 4800da4c2f02ac2e79c121910e8d24b2
BLAKE2b-256 565cd24e0b9ccc1ae533833cd57f64f67e6fb9f1bdf19968f5f1eb1f6347ae1d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210511105045-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7163bc08c03b9f6baf45792119dd6d67d9d5769f7e95bfbfa07dc471886659d8
MD5 9d61b4580762fd966aa715cb178b261b
BLAKE2b-256 6ec0835f9fa0fa934c5f0f3837a2e8a7ab44c6535250dbebf97febde9ac660ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page