Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ccb6f1e07b367a53a1fba68f018fa1155ec10cf14f26b7533d1b6e636e3dd605
MD5 fcc90c45c70110d4b63526972982aa22
BLAKE2b-256 5bd4dee8aad20cbf287744f3209de356c36bb19d18fdae65dfd39e37cab21e0e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f5b1880127921c57550a83cafac9079a92a6137b8ae435eba8144b77372bdb7f
MD5 5b9e5a73dd4e1972ca915812902b58c2
BLAKE2b-256 9c90be1a1c129c07ffc9db551f9b0ba66c7b9dd6512301e3a53e0931f39cfbc2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 409764e2a4e08a9dc4bf599d832ee2561c28e6db6d0bdb18f3b0f898dc3b0890
MD5 641d05aa82a0060cab475982b8f393b4
BLAKE2b-256 fb4f0139075971930355b88bf6a25a3305b5fc707e4c8e99abc2b236754e38b4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ad7789826c24bea9bcd6761db7753b1f1923112461e2a0623e77c7d347c0e2f3
MD5 ead6fe771d472f74b514122f3bd3aa01
BLAKE2b-256 4f0f9858247b2e714666c3010ed67df1014f1a7f42ea98cb6062a58503f0ddb0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 af7485faa93a35e11ea66acaf308c559c7b6c55857556b0da5f01c0a96f263f8
MD5 e15230e5b49d0d5eb0df55b167d58e76
BLAKE2b-256 d62de02c2910c723ab6986a90adfdf5c9c2c49e1489a4894c9c4fe9ceb8b400f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2e381f174ac0edb69bcc062af4830da8532409bb7cd9974744d56c642a9a2630
MD5 142a32b1466b8901572a6ab6bc96383b
BLAKE2b-256 ea1a40fc3614234fa019f6899537c53cb8cc923022a1441c95c5057c92547905

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dbc9f69a151b5c5bc5d1b4c56a220cfbc42d67870519e6330d0aae12b87c8584
MD5 13cf2b219a76c0f4f34567ac4d8c2c85
BLAKE2b-256 362a3b8e4221030ccab68ff3b3fbecbb45b16c2b4afb73e2c792eb814aaebf26

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc39b62f5e7b424d914754505704f8aa616ada322ebdf76b2fe75c195f42539b
MD5 0bfb32f757da7d1f22d8723ecf458981
BLAKE2b-256 53fadf973337ecb487a991afeef1fd3ae02dff3acc158857b16118e9d8cc8558

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 563914961866b6b2aa2129124fea41a22100b748f41607217e300fbe5f37af48
MD5 f8b5bef025eceae6719e72cdf53aa778
BLAKE2b-256 5a2f2b2a2dd6db626a3a584b4ebee9a0bfb872aff188266cb692813ddf94ca5b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 75cf8ce668e8908914bab57bbc7f8f3fc66ef8d4bee13f74453dbc2079822cf6
MD5 a15155d6588793172035d300d92d4b16
BLAKE2b-256 becfa761cdf6d1067bff98be60d92496dc47539b0deafb977ae24c3ca81d0241

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9dedc0383d5faf95937ceadb5bd3f62edf2551dc4b5444982aa5070b1aa44612
MD5 b699359b71a13667ba22cab0c9d552b0
BLAKE2b-256 e14a135659f33e187cfe57d74704cbcda6c869a52ab4afe5eece45aba4697c66

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518185841-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 07e186e88f32e465a15b5c88ce21774b236c7e04497a1d470eeb2391b3e4fc8c
MD5 893ece58a6ce248ff40fd9d98472d0c1
BLAKE2b-256 73a54f0833aa747ce902326a386dfaef715d65ad632f0a63566b995dc8098a28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page