Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ed6135825d5d231f0dacaa166d6ae496bed48b762bf277d3874128f78b43d59
MD5 49cc0a7ac61a82c659dd91bd145124d8
BLAKE2b-256 f40334402f95281aac2f2a94e1704ea4859739a4a3fbd2a699be61b4abb1bf07

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba8bffec4b56aa3848f63b67c2b480f403d600fb039fca19cb3ce652b8b12bc4
MD5 59f765b3109b53b2fb6a6a3111d2c590
BLAKE2b-256 2bd78e35a7b760025b1df093c3f196f619922ff4dad7b8018999aba4cb451bb6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0e4713b9350a5eae5aa828bd041cec2d6713f8d8d1625f56609f260c985bbbb9
MD5 e2d4dd6f0e1ad631d4c2bce48cda9745
BLAKE2b-256 b6d6e9fc23012e5a6a5f59ef9c2989bec9a845c073fddad049bff199d8925819

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0befad262b4de535eab7eeeb4c4487a1a090d6331cdd75a10ac2d59cb7ba6c0e
MD5 ead7483ede88f7a5ae315c6b1a2ffa93
BLAKE2b-256 20ca12e1169116550270b592a037faaae0b3f7d9e5c8fbba1c05a454941ebaf9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 461e02d718117c0e8a998d6ffe98afbd3dc2746f0d4640e1e94255cf8c464c48
MD5 c11cb329678859ffc91cb518e34ef34e
BLAKE2b-256 c947ccd84c3b06adb26f2e6812be113f436ac3c1245298213ae5b43d41959b67

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e155ecac41229f0c84b25a1c060e1833b13c6f004fcf5733c4bfe157d274e886
MD5 e29c951e52adab42f33a0a2ddc3dc13c
BLAKE2b-256 585bd1aca3b83bb9973cc0cfaa740fe71cb4d5e27fa8c9168daaae7243c5f3c6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 18f83dfefe3ff346144ff9d731ef33396cd0f48a266094d3515bf36df4998e4a
MD5 b6793c352ac9eb86c9a0c0143a81836f
BLAKE2b-256 0ce2b7ec5de498c297cd62131378711d1260eada98f839636a06944028b2f374

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0fe60b36359b56687ccd56817d9b75d94dfb1c48a213092712707fcfe8c6329
MD5 0c76bbcf74d915ffb972cd71ddaaa1b7
BLAKE2b-256 2a231b7741ac6c0ea97601663d70b714708bfeb4ec1c7622fefb98ce86618247

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 064129d0e7550a1b925e3d0950ef12d0cc86b784ee9784daf084892e496ee6d1
MD5 4873b662009a50b7467aa6cb5798932a
BLAKE2b-256 c0c7ebb91f622c8786acf12e68e88b922c7c1cc1559574f245229060da306641

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2e4e2a1c83a9baad417fdbb312a2da64d9b5ad29050b6c9cdb02e1e8af6596fd
MD5 c3aad201c537939c038a13932b2a0b46
BLAKE2b-256 e85490d132704eeed8e31ba6da52c6d6fb71da0b4e08544e041c7a2a27b7465f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bffe946e2247ece86f5b0a44d549f4c9a092b1daffc527b34606d07c07906306
MD5 d27c1c31299bece8ac04ec9eb5dcf782
BLAKE2b-256 ea74a2af669054755d563b6cb5acbd144ee2cede8806a23ed12e43ca216e9159

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210528075532-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 56938762d394057a5a1a9b7c9a1bab91d98e67103d791cc1b7532067f3a45d5e
MD5 3ecf0afe8d3c5fb2fbbb83d7b5107dd9
BLAKE2b-256 a258bc43cf8cee7c88f58ba16e89ee01b3936f4861ffdc266b46f4c5fe77ce13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page