Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6c883e66bfa623d1cad45bb95ef9dcadbb33c586e09e32da0df53c4a7458be39
MD5 d220eef058528859b884700f3c265b5f
BLAKE2b-256 722a7971d197db364cfb50ee8a1b6207f209dead1596a82534cf1e389d72f981

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b30dac72550cd252294d5045f091509afd60bf5bec5bc9912e25d0a50b6af2aa
MD5 3951caf9c5b8f98d691e7f4ddd7ac895
BLAKE2b-256 eb0fc8b9edfef1eecbf725a0f2d010316b24b832c4f4b2abe1cde4e5db9e8763

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e6ec27dc55b38a7998447e6a2f4d84247d785f81a7fbeedeadf382df8695ba43
MD5 c7372b044ca356a042b54a9c13a14ea0
BLAKE2b-256 0a0ccd0dde8c72a7ccd652717b99e6f00024e13bc9d2dcfd9c8bd0f46d878d25

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 34f52b8f0cd1836d58f3a21f0cd2ce01a3664918e4ae9a5838a7d1d438609791
MD5 4bb0b8c3f53be867b5d4e0035581a8c0
BLAKE2b-256 0d569979b3c76168266487c5b71f7d258c2f7409f1c75c4ed6b24593e9e68766

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 807e7339d2ce19d3b71c87859e9478a09afe8d5bd220d4e79d2b6b1d01290515
MD5 6d1bb2309dece56c6646a4762cd9fba8
BLAKE2b-256 8d28e836bbaa44b8fdf88e819d9facb71b142d7ff676029b0a510b117f04be66

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 939949f8374b2fe9f42fc643f25eb6d8dc5d0dc01ed6c2f825f75aedc2113e6f
MD5 9e873da1dc6c1fc5ea34226eddf39e06
BLAKE2b-256 38c15f223043d3c043aabe0f95eec86bb333b046c79d847fcd358aa61e8b59f7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 574a9ec4adbebf713efee04ab372b981ada3abb8e8303141189908f928e3d615
MD5 a6ee92b25d67a0fef7374e55a179df2f
BLAKE2b-256 71201ae27415f82369ee3820c72453356835b2c73930eda627ae4b3d637a7f27

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a76f037d71a43a24a1bb6ad894b071555eb6a4650ad1040c2a12ebdf7a0390e
MD5 52085f02bbdb5b8f012ba0ab81e6014e
BLAKE2b-256 33e820986259a5efe663cb02a0bdef34292f86a0509fdbfcf0c2cbf2108e5afc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 605eba0c8a137e406e853bad4abc2f96e62745025fd240c208ad22c3718ad061
MD5 23037492110e301b36c675465813d48c
BLAKE2b-256 0812cec46ec39569b7ff3b96cee434381b0701a3f633b7171086e0d55da025e0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 10f8fbf3d7026055e221807b26402c358373902db50e0fdd1a47b6aec2efce58
MD5 1b346065fbc0e603e43878903c60d2a1
BLAKE2b-256 6a48d9e2cc7d942aa0e420482f75d04b15eab9ab76dd3e314fb7dcf9a8d83aff

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9557853ffb6ff9e98f0e43bba19338f460878957647c7a2d158d989ac79c086c
MD5 36295b092b0beeeac2844928d8e83eba
BLAKE2b-256 cbbd92b40aa30ba70548d118bbc871ab119516938f6459e47427386f027a75ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210604054403-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0048f4b5b82d0cec010a6fc2274d267a8905d1a6f8b6e9c544478b6dd2522e26
MD5 690c8a718ac94d20e497b97a81ad3473
BLAKE2b-256 5f620f9f8e9fe4f67a6ce77f820cf6d600400e313e52cb2e38a13ad97518c4cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page