Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d14d26b00e1b8cd542a17dbd6c46bcf2d741df935c848f89a5ec8e596a84f185
MD5 66792d24504e351c00d843674488c56c
BLAKE2b-256 871b458dbf6e191117d249895a880061d6d07e6dbf1635aab0145df872c00f4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a3c79bc1b0f3d243caf7b022a113be62f220a01cfc33501d387caf61cdce2f10
MD5 4c9753652f19f02048d915e45bf46a4a
BLAKE2b-256 fb6497beec61f487ab30b5138960a3a4d303c24b28029b6cb72fee33735f848d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5d3cbf2eb0cba621a47ea1e84153103ea62ee6f09a33a99b13cdb452bf780762
MD5 9554f39c184d3dd035c8f05917b2b7e1
BLAKE2b-256 0ea999461de0b2a5887ac27cf5b79fdced127fbb784e0eaf9de50ace4487f8a9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0e3e7f4e5612aa701a38de7c4733bb2caa9f6715e2cbf801c19fd14787366def
MD5 4cd32a1842fa016bc44bd64c19992a47
BLAKE2b-256 26700f94ea27cf8adc0fe8cdad8603af99a92ec25b3398990cc043defbaaeac6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 21c8ecdbbeb7022ed0e264986f943b9577a382abda0e5d6e460be13a4597e01b
MD5 3e6fb5a705cbff94088790fb024b8a49
BLAKE2b-256 bce12330c48e55bafd5b3054938715db3d8cd3934c75a2e9e61b4c56997ddef7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a1efeeb24e48e835e3ae66a30151d3e44b7788cf0850f77acb2ca2ba908b9059
MD5 4b8cff379d3b2f565c3faf45f6401f90
BLAKE2b-256 8aa1e871b175ccfd14daf814a2454f04f5c6d95636db2806345a712b9cf9cdf7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a73bfa54a60c0e0112f5985130dc51738b1451698d18d9b27f1115a64373258c
MD5 a25499f58fa32304290e6697e38d6b70
BLAKE2b-256 85bd3d1be5827abd993359c7bb390f80137d024980339625b2f4fa112cc0bb47

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bd13bef203664b95f9996cc53849f7fe6aecf94fa9be39111c1f61b08dc827da
MD5 7f4c6daf4075e092ee049f15328a0aa7
BLAKE2b-256 adce6bf9e8b32e3ca5b2f3d1bf6784d362bbf5f383a52ff4f1b5d0eb933981b0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ba6d0293b2cad7d8e14eeaf7837993aebdab72cd63109035801f3fc1b625bcc2
MD5 eeb96ed9aa68c7e48cca7810a3a6ef34
BLAKE2b-256 446da14a1d7547539dd4f3fa1a8e5e97ded9635b698fa9a36888f80e1f2cb4f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d0d0e683c61b3a52c9f7d0ba2c8ffa1611be7d4c41b493a3ad78a2be92e1203e
MD5 9f7cf2d4783e1b7fafb3bd1202622736
BLAKE2b-256 3f1e43f01924fb6559e946290bcac7fdf4cbbd71cb1b57c3bdd2c879fd174252

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9fc0575562236d430cd14a8ac1176d785578d1a85867918ee68f63558047a01e
MD5 b763f32924fde1ad7845b69b8a310eab
BLAKE2b-256 d368631bc1fc7e9521b2264b7659933b4fa72c0cdf6ae664ec2aeeda5dbb9024

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210605205034-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 269a9f75425b52701d0c6ba768d5b17f118991ae0a7be82211a5a23ca40efd7e
MD5 458485b717ddd5403648c047d438a267
BLAKE2b-256 2d786f37b8dadd2c8acf7d7863c458250b7f647549af44bf1e97704d86a8ec10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page