Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 01ada8465b28487d2b700930920853adfb4f05c04b9bd4a0295b75c8466a5da3
MD5 27c7fddfcb3e2baf845d0ed77e92e996
BLAKE2b-256 81974cafacf9c35285a89f534783c1927ca2b15b555eae73ade0f9630ef25e89

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ca1cfef13c59ef6dfba938267cd9a7bdb045aeaf6afd5d60aa78db281bb1d7d6
MD5 ca554d3b023ed450f940ac2b5b7fd517
BLAKE2b-256 d06fdb7cc8cc3111765dfc871a401f93a808c39f1adf4a7b8b08720dd0b776d6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b4fc01854469f8b7b157af6406965b7a4d0b6f922f624419a2201575e0eb928e
MD5 ec95147d7c0138e8c6d1b16ff5fb1a9d
BLAKE2b-256 5a97c0a90f99d2c20283b0b9528b10fd81644930d7941d40e6cd2a1baf680051

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 22a4f427d73cb083d9a6199c5ebe22cc5d4170c656e5ca42e186a2cf208663cf
MD5 0b14f2d7c4172607e4930c74242d8dda
BLAKE2b-256 ccd26a3a9b68d1786a10c4898770e1a3d3ffcd493d903498292aed7cc702f558

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f29587717ec4e502a35332cca6891157befd95d9e7625bc823239b76d9295393
MD5 f7baf6d9f73cb3af29712247896bfc21
BLAKE2b-256 762fdfb01f9318ef1cb896bd5eb07989a12879cbe63565e8f64dacd065ca2fb2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f2b8150c0aa1d46b4a012420cf0bfba0aca335c4bde46b8e719ecc09fcdedd46
MD5 790760b16d95c033d042978aeadcb48f
BLAKE2b-256 24dd703fb72dcd97a0bd4a70139ee8a4ef433f78a07ebd9bdfea27fe0f824c0d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 080218dc6d106afc282ec1e38f1db1ef90c4ace87c50f201f72e88c76c446498
MD5 0f2d0385c5f644f198997f7d4bbc906d
BLAKE2b-256 f8300070a0544dcd0bfda2bf6c712ce6a37911486b30bb238aca10f0bb89ef8a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e9caeff0051c0db89e8d03190850c2a797f2390dceb97b35d564a4341c3e67a7
MD5 dfe3b067c41da7dcc3e9cc3a0b80a86e
BLAKE2b-256 5fdfdc47b48189413d44271e317d74ea8bc2e78d1910f77ff78c87f85c5948d0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 294ea3a9f2995a470123c60ed39add32139bca8aed4ed31d4680ac4dd902d453
MD5 2fd71136f1c8dc0db32294735ce686f1
BLAKE2b-256 e112bbabdd9cfc08c1e86e2a707813a48215de29cfd4d685e2388f0c2587d3cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 32e2cdf1afdc93ff64696d1d23c08050e689617065b4b2b42504db5e6d72e59b
MD5 b0f04b07d6eabb833f6e722cb002a340
BLAKE2b-256 a2520c4d829a265e0cfa50ef7ba0dd21a078c71a34e547ed3a06e41ad10f5013

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 448ef7cc1ac3893dafe6912b150651afe61b1862528eb31071b7aacdc0e539dd
MD5 88a229a3c5e2c90d8ae88ae86cdb6726
BLAKE2b-256 d518484221356892ceb1f03d64d4b775d5833c9b8edeef334eece234e1144130

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210609134947-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cf27d2a1e89933754463541b3be8cb998b32ac4c42e1b268db0c9307a0533f0a
MD5 8b6769131885e1b4d729f2b2312e4cad
BLAKE2b-256 00c73673d6fc04c07b8987ce97092bab039f796f93ca862cdc6c8be4edacb8e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page