Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ec0e4293e773cac1738d76d48db541782d81f305a0264a0be135d4f6be942ed9
MD5 47a815351799b7a4b6afbf0e68401b7b
BLAKE2b-256 5106079f238d48128abdca8170b0bf51a7ffb478a3e3b23e90b9b7a1cbbd0881

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 02b1d307a3c1c4c1a00ca554689869e04b587184d48fd29f05315b5c79475321
MD5 94a6a9397e33459abb782bdd6388774f
BLAKE2b-256 03ff7ccabbf0830de37cf242b4a39e3d502555bf42b9df012157a5bb9aabeff7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 79d16b23c6c288564a605ef7651c058f4fe8940e2e0e87271fcc93f4fc394c91
MD5 3d3b3b21f38ccef1ec7c06be3d9f77c2
BLAKE2b-256 c861d37274e4b701efd21f18ca05f86e871da40c32fe7d88e87083b8f3a830cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e9887ae7165bbedf573608da37f621b4ee6fef9e83feb7635777c3ea6cf5f23b
MD5 3381d926e0a5e34dbbd15da0b9e16755
BLAKE2b-256 4edfbd24b197c77927edab986e31bf99de3ef876ed3cc9757bcac6099fea0936

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa40c60e86d00b44a48a893bb701ea54e34e48aceddb7bf4cf045327389e6b45
MD5 512c0f0876578de2d54d4a9eb3a7ade7
BLAKE2b-256 ef3066eca57cb4fb818de55498764390ca0d9bfb8735fe9733fc5cd6051d5d4f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 da64cbdc45aa1d5951d6a9c3eae3c3713577108316ce93adc93b4a096f44b239
MD5 f2343f6bf661508742fb3fd3ad39189d
BLAKE2b-256 2854499c7a371b5a1a3fb299c6c0281f24d5565d57b78d318dd8be0b13441a0b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ca7a8ece96013cca966e2f7a5829d80b62f15510d6ba91afca2a72a7080a2071
MD5 1b03fe80eb8b61310c69e559c8615e61
BLAKE2b-256 44b0a6382bfe55a0fb347ed06885e6c2db1b9c438c9319e06469b2433a5c85d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c3733519af5c117b8f6d557f46bc5f545e617d274d6a7a729a32cc5dce5a3422
MD5 50fcbc917d39ff2864ff6c397b0a86cf
BLAKE2b-256 09245ae3afdaf1a90f1d7f66a9c712fabd9c2cf639beb85a4cbc0e6cbe8f5b69

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 972ead548e79fad7b5bea0921b38b31f4884be4c468c6a1e50602d13907199a1
MD5 d70772440eb4c13d7ca30cc35104aae9
BLAKE2b-256 202aa995f7dbbd3920a3c10b037d3d9cabdfa788e7ff75c3f7015796d6877c26

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 58d90445aa394e27fe2a04857093402373691a1c831cd116fd817e2824cec976
MD5 819bd598135fb4f71ced8d67ad1e929c
BLAKE2b-256 bbbaf92e46ab158bd174cd27b49429ab695afcdd8681403259106b246437a9d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7f5eee8ad7b9e13d86da7c7607b6960486be50f683c8aa6f83a7e0ea5089fb15
MD5 459c0bbcfdf1bbdabb9454566499f360
BLAKE2b-256 056c1470578416f48ee694bfc78062fb5e02bccad5a8cbfbf4d27e3babe0ff2e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210612130231-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 738bf1f189fad006fc3fc89af5a7d2e86ee10e2188cdb5ac3fdd13fe32c366b2
MD5 1cf908293376b438590628d116f24b2b
BLAKE2b-256 a68174e501f674802bc013c92bed1b06febe96f99eb04755da72af4deff11869

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page