Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 91ff173ad273dcf41e79b86c0906ef6e7f96ac6c39378aaf5266f47bcd2592ce
MD5 fa6df572b7e72ece00a8aa3a90f93382
BLAKE2b-256 6859787206988c22eb0156151680d393c5334f7bd31ce6617d9dbe6c45c3657e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4110ed060dae44fd55aec89078a724af8599e2113162087f3878ff39e829569a
MD5 79918bd5411fa79310418ea3e578bbf4
BLAKE2b-256 3f3e8c5dee81f20ba876441b2c44c2241c87ab8b5d8cc0af3161d8e8dc1f3901

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 56b0f815a8a186af2333afb74d929efbd3ed70715accdc74f8072cca11c043aa
MD5 a001af63b7cd7e5badadeb126b727c4b
BLAKE2b-256 0f369d5900412a8f206ca2de11433e695faa19e5839fb4be888bffedc410274e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 027fc3b671f9da66f8da13e2e6a0e1319dbd88d8712797a1c205099d769472fd
MD5 20d8a3705ec8cab9df2c6e2dba30686c
BLAKE2b-256 b0db51b4f21aba8a23f9d6ac4da5d215c2729cb98e122bb4619d3b3c2eba5f10

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d0003f594fedcd4abe6ad35e93a398f938fad09abc2087610bab45ddb36de23
MD5 b9b1d2181e7f487c9df1d3c796e9dee2
BLAKE2b-256 1a0e78d83766dc1f6016f85ee57f119c57c915b3e5fd625f4196ed30df011b8f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0c5820b7ee8718b62198edc8729e7ffac1dc3ffd315f13041146fe56bba95d08
MD5 51be3ae21d8e2a1744252cd7bbba9260
BLAKE2b-256 3a7f19cf29899c2615776d074f228c95e9720eaf1751fb925f9be26a7cce550f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9bcfa39b78c143d6b30a233102aec54846b46621f8dd204155a84447a7f303d2
MD5 702761b24eed30afedc609df3fb39922
BLAKE2b-256 eeb0e50537720c187b900c747531f2b7e94caae687f31209e001294f5a144e4b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8159f56e5b58ceb179bc07ba6a3a6a195f881d0cd7e83ee5e11c83856b90a30
MD5 2c57177c021dc6c598281a480a0f4631
BLAKE2b-256 862c87a0d1139e69f6e19654f21b79dd8ffb166f92591c86ecc7a954e699539e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab83665959b748ed10a7fa365591e8b9b24c37537b60e5baec5aba4e4ec10917
MD5 7fe26b3ec03a9d5fe57dcca5a556cf23
BLAKE2b-256 4ce9667762bd1b57b120584130b7a6a23444fee9a6d4ff25e4ca8254d3424658

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1544f429044f18d98d8aa5003586380840b2bab57e73c9a58dbfbda3a4b1635b
MD5 19c147a6a1050a6cf85bda467247006a
BLAKE2b-256 8f1b4523cb0260a881da3a0cb5d56e85970071c4c09480c6b41045702b731ce5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4f705304ddcb7c274dce5160aa39a0b1572b5e71c31b91a911b86e1780398b0b
MD5 1e671a7faad259914b560c706db4a970
BLAKE2b-256 b81888e2e76cc8f18c89987ccb88d23f4e01a7faf096b9a454ad182d69041ceb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210616184819-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 84a52ee40840588e7ea0fb21d44f5c9191bd0b334f52d06c5de4219035621514
MD5 59e1ff7e48310480241f0705a11f872c
BLAKE2b-256 9aafe0b2a052512d5d50fb04071e0c8f0a06b29fef370506e1a6d15d9535cf4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page