Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd62a37b3807099167f223c0d8d202f8de504e001cfdad72e7cee3e344c3f237
MD5 317c07eed01ec5f5a25472244a93d4e3
BLAKE2b-256 847ec6d3ba7dfde04934ef1724018ee34016dba7f397bf1e579d8c6bd5c4c747

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2a9485547048a60e162699c2edcc65dfe8a4c154bdcbca027afc24a13b5f3b97
MD5 c8eea48f95245d22765b4fb8e2d37d2d
BLAKE2b-256 994e3f93f9dc2945ef868015e59553e5deaef8320c4d69524e638beb33ac2384

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 762b7ee8d77fd98a0160eb84cdd13c057c7f6f8708026921d23ac9d3d2a65b74
MD5 7907a09af1f23b60a1e5879fbaa92c89
BLAKE2b-256 8054685aabdde7d2467f57dc45a788b0a309cf9229df89ce2d8baacb45c3c8e3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 aed9ee14b95d277a5a7d9f45b255018f7a76f2c8350d4f92fece8106015c4f2e
MD5 795c1bcfc4dd72d0bd06328a37c7f8bf
BLAKE2b-256 d680e265ea937d32a4553a6f70a585960504a1af46ee10419485be3b9eac3e7d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ac9f465feb868455c85b0d360ce386a33e9c64e07b5e589774348241c0213db2
MD5 c4a0cecd1a1507c0941334032bd70d73
BLAKE2b-256 5ac2a7557408875bfcfa749b0ffdfbd3c84b9c04b5b700d33e63e04145664e09

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 15f266ab5a8cc2192f419bda1328f8f4b4a8949ba0f488461018dfadbddd66e0
MD5 ac9d35d06b630446d0334a4489493afa
BLAKE2b-256 6cba9e7530fac2e4dd6d6281c1beb5d3cdd3e2a5a71745332ce5e5c980c297a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3839caa9eb83c85c0603c6cffde662282e9b4ca3896a44276f769a834d3d8cae
MD5 98e64116d633b1a0b2de8becf9c2b8b9
BLAKE2b-256 2f3103a32a0849b57bfb9220b4cf629a751a03deac78f319d4cd9ac55397ecd3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aebc85e456a1d0d00df3ae895f61fdf4459d9fc121e0d4bc2e8e35151be31cd9
MD5 8f7b91bc88adea97fd1799a5de7284c3
BLAKE2b-256 881819cb3369c95032ac9ea4db4b80e69b0a4288bf0e32c00a0f356cad369952

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d286c85407565995e8f5544fe7ac873410bd8877a75c765959264effd5618807
MD5 39263855c44809249295349753412411
BLAKE2b-256 d06b7826a360e8bbfb2cabfd3827de96b383aecc4dfbd57c802eacdb25d9762f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bd78f849fdb2270cd469725c19ea0c978d43b58f6f71b0415b2f2659c78a2804
MD5 0dbafced739e9a8d0395d54db7b80dfc
BLAKE2b-256 2344fa1c830f2a4b40ae1d579f16bcd693100b04d1690f4138665fab196a478c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7ca88cef06a23dcec70c00f5f3c1fd7dcf09f4bdedf5c8b4603356e003200c93
MD5 26a79adda3af58e66957d3f3ce9e671d
BLAKE2b-256 351801dc447d52167646548ac03a41036aca2ba57b0e32c668ed84f2990d87d5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210629125906-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a8d082a80475ab80f0843dc1751a54bdfdf5ccd64f93150aa0d270e6be1e4414
MD5 352c7874db4bd13ef76956f9af54641d
BLAKE2b-256 1a3e4ab695e0677e8f0ca527866bd77c0028923bba812d384123d84ae74bf20a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page