Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 23, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c4a4ad53e236eddeea6e04cf7b52945bfe2a8f89c7839692273d3bae6bb2279d
MD5 a856631b7d24fbe7bcacd402e2ae70a5
BLAKE2b-256 8744c1d2b318ef3d02a8fadc85aa69a8e25a16654bfec6f3be76c6e7689a97c5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 26045a711080f58d4053934ce61e82488553cca4f23d83ed86af7a8d9e01a351
MD5 5a738c07c8ae2a5fc45cc73a3a1dcd32
BLAKE2b-256 de26454433167cafe24bf943aef81433f7e4516c13a4cec4f6bc69bbf7ceed4c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a6feb293fa90652c16d017585e5fbc3a152a9d7083e0cbf434b33fc90acde06c
MD5 30c18df89160ab5b8db336465815f334
BLAKE2b-256 7e276e24c0e60cd0f357533f1e18cf72b9966b1cec8d46074c630caae736d7da

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a938857df781ec3197bc51033803f3e887541f0e4677b928ceda89c38609445e
MD5 d997c7a3b92ef8b41a67ce7b58db853a
BLAKE2b-256 d20f5770a0f8387e9118dfd2cf40f5b97b67c9a6a6a9de3f0c18f5fefd3f322f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 54cf0f654740b9f7fe40c4912e1889fd7499e56918f931d19da365a8a72d70bc
MD5 bc52c84a33ba3f49a55dfda25e16dd1b
BLAKE2b-256 ff1ba660a1089c57c6b513b0c6cec682c5683456cd90fbed54212bb514f506ac

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 68dfe5bd4246083af8efe59ec6f65ae6bac919aa821633cc981fcc9029984cfc
MD5 d9289e112ce068cb33834315abcab5d3
BLAKE2b-256 282cf5cfcbd04bea7ec7e45b0db86fd0c4d502c79573c99c4f6aebd312cae737

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4c36f616c133bebdc7711d97e0714803f2609963a33fd3cb455e44567dfc9701
MD5 aff9549022ead5d2eb9d817e16aeaabe
BLAKE2b-256 3000ff89db90730031e9938ac43303ea00ed5655a6084513452b94584fa299a7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f4ed5625d76e7b63d0c550698db79fe2c5159b40b6757460bb1250d35884160a
MD5 0495183a9876d9ca25dc3f8dfa2e2d83
BLAKE2b-256 1d4e5351cff0aaed49938d8d8a199807ee172135cbe474a44fc8bb7bbc8d46d3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5fd6d82ff7337f515f44c5ed1e239d272275df3d15f021a8c18e086948f642e3
MD5 33de16b7de63c46a8f6393ffed48695f
BLAKE2b-256 f37c3783c86643114c8a9930821f8fb6634bc2e452fd1de60f5aff546615ebcf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 875c68f1ccd4d6e0ede06815b755165cea9cb57e043dc01a7fe816e81f9742d7
MD5 35ff0e7feb3a9d01ce2587311f57456c
BLAKE2b-256 e64e92e695ec4970f5636172373444d3e5d14c8e61c902c196714be74dc1de7d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d66f53795df18b1bd35b37f0db20af954d44e1095b6fa33aa3ac658126167977
MD5 484ff5e35d2b528d71a842d5e91535a5
BLAKE2b-256 487df22dc45032b0455785efa8393abdc3ca87f2f1ab0113aecca447d3b35657

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210723205827-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6eea0303a5ce4cf3697b81b4b12fad5776ebe4494539f2545f3edc9f551d3386
MD5 777954fb1f8ae9cdfdceea171b7dd0d2
BLAKE2b-256 6911872c0d5aa98e195d2c4dc0bb3b50d0acf4f0c92ec8c78f38baeb8b9a86a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page