Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7a447a28160427a67286442f8842219b80c187d32c25a9dbff5f933e44748942
MD5 a1b3e9aabcf62a0ad95b2335db423ffd
BLAKE2b-256 4442f91b59bcddd663f3ce4ed513b568617fb154ebdeec273149239685662b8e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d284fab375842d1e6af0383e1707e7e2c555c72b0ebc0226bf798a7cdc7596d
MD5 88f4847264cbc723d6908bfde9d3c3cd
BLAKE2b-256 76e9b72e4dad23ce55b1dba2ebdd3ec904b95b47d51992d4a44e2ff29d23714f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 47a91b3f6aeadf70766977c8f56af6f8a2ed70230d3126a87383fe220f3cb742
MD5 91016921e1404296e258916332ee5b7d
BLAKE2b-256 c58f374f2817b832ccaf5f0146accdb8a13dcb0a9280d57e2575c7e8caf9fce8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 996f561ddabb05a6c56b9f8e5bd2ee4bc7602b6e6f8bf06bcd38e4780d67cebf
MD5 4e29dbb0a8ee6c1bc4476baa69c95346
BLAKE2b-256 5da39a66a1a99c6a59ce528e9d4340d289540348c7b6d1afa8f82bf1c861eb9c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6a03a2da75fc0a7352a825efe318cd44ad1541aa6b7fe2180cf66c9d793a53b6
MD5 347bb796d92147865a21ca285338b40b
BLAKE2b-256 893c0b0e7546c461d047b985477e899da08763d10df9770813eca93893127c51

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b287af845bb3ac719bc3d596562bf67a6f1e4ddaa3c1e916dee60926b3d02a16
MD5 5ec41b2d2498e6bfad2b055bf54a75f7
BLAKE2b-256 19c2656610be0b53d69f13b455566ef89913b7746cf375aba5eee03d8ec96d5c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d071c2e8564a7075c551554a61d630f25643042da50a7021622629e4a9b78b06
MD5 e3f59fe2c7973859defad41233fd4e95
BLAKE2b-256 4a5b2f580016ed4271f5aedd7c966d3d0d8b68f18d3295eedb6c1930f1332648

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4add07e1a703952cb83fcca5b84e45b9c577bd0ef2111a30062bd683785e8cb6
MD5 30c8256ca1bd93144732b9e4d573ac3c
BLAKE2b-256 fd7b50bfe56c63e3ac71e508174b34043bd61cf6522beb26c9fb6be8a4bb16e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9ffb802010118863f66f52c61fc916a4836751c35348c442bf5a4215238b7025
MD5 803254a27ddabc24365b97474e0084b2
BLAKE2b-256 7625f3caa037974069273c92f3ddf80ed53bd519a3308589450465f1e7412aab

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2d7211c4357ba7cdac46e0239d17c83fa68df0674b5235b52cbeef9697d72985
MD5 3155b00d02c5d214fbe8fcd1a0230c10
BLAKE2b-256 2d7bcaea7c5a32ee27f2ba7774ec58f4865175b6b474b485c5108105c9c2c326

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 36eef9d1e60e11d3dc40957586df6f0a6eff2ade017de5d0592c68a54bef0b8c
MD5 b8ee36e12939791663f1ee9c9e2c04db
BLAKE2b-256 57de6f24d4923b6c9e4a2cdcaf442264d7c47fe69348d6e540e837a4ab06e917

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726104847-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 62404a44c51dcf1b11f0f5b59fe461ec42bcc1dae1aa96fabae00626cabd5ed5
MD5 f4705143a1c5440117b6f3d051dfd30a
BLAKE2b-256 3a302922844a45d9f5c38cc91ebb414ab109ac049fa7de6bc9d62def3ec4b636

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page