Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3defbf7da5100740eb9f080a00893e972950ca3d21f655a385f87ddc8bce96cb
MD5 e2bad9f9c246656af98f3b59b4c02e05
BLAKE2b-256 4256da2354c2dbe77f25a31ae4c140b906cbaa38633e0e27d03aa56b585850d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3e2b2beccf2cb9c05b068f55cfe4b6f40b66a83a1624cd524fec9731efa21e18
MD5 c998f7571deadeab95f01f8189cb5c3e
BLAKE2b-256 dd11cf333e88124016d30ddef6bcde00f2607f913e896e57a23f34f1880a94a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a200c1cf895b7622d94918683cc046dc3948e69bff8438bd07df1f41dc76ff83
MD5 4e74f2c5cc5abc75500f97029ad26f17
BLAKE2b-256 1d0f83d5f7d05d9b7533d2380574776fa7c34708c7bce173bf56f8e865cfd38e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0b6e6335ef5cc02721cbcc4688e6c95da70cbb61cc7f26059a7fef339b57463b
MD5 402a71fc60513e7e8a39ebd356d78848
BLAKE2b-256 112e7a9201483fab3ccde3e1433a1120f0ceb431660989e84996e40a170e3282

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4344bb693d40eadbce82815363aeb0b209752f7d68698cccf42b9ff9315eceb1
MD5 e761e162894312c2dd28167865c91c90
BLAKE2b-256 d8c7b43f27419138389fdbe60d0592905e95dd92f343418c022600b49231193d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c2ba98379f226f3d8b939c0b1b57d0b833736617289c3adf1ea1f15edc2ec810
MD5 952292f5d4b423a597832b92469b3c07
BLAKE2b-256 0923414fb256c374a7240fe1fb12ef2f40288117f4c9a052355ca9c5a3c16c69

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4628507cc9428a2061dcbb4906e06f9d596a49e2c52069042f54f1cf048c84ad
MD5 5716342318fba748c5fc65b57c2f4731
BLAKE2b-256 a38ec3ea84b54f9fe9bc8727241bc2f6e7c6d7c99b8931b84297d459e4c5c02e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2645d1bb1c6ccbff54a5fd0250252757382d41608878898e835307ad6fa968be
MD5 90a38915b9125598659a475d9c8cac51
BLAKE2b-256 dd8d12aad0fde1f719e5f36fd4acff1bb7a33075e80cd77608bc92cddb29feba

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b152a1e9cd58ef0cd1cfa40a421408719ba71d8cdba413e0b07b06fc42994b39
MD5 a2d38dcbbb8dcea2afebe310d94cf16e
BLAKE2b-256 ba625b143b60de5b2103b470b4e9e1f639e5a166b9bd6257a864f162eedb85c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 42b941c89908acad78cfaef51aa15b7637490e3ea849a542e98269de641bcbdf
MD5 0de52a7303f6a4bf5a64c2282e36da4e
BLAKE2b-256 8e2f3b06a6e846280759ce1588c776c39eef2bc3b4f50072fc37258b693d3731

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b7cd8eccde55b7fc9b6c6918153297ce876a9800b10cdc80ed63a7dc53e6ed44
MD5 44de5ad1b1f8f4d9c368afe741c11e6d
BLAKE2b-256 2f9746ce389e6e2d00f99c42b282ff8aabe40a102aa79dba052b0b9aaa4de7bd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210726175921-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4efc8522c186720adf65a4af12cae5265bc3825eee85da5f76dab3fbeb3fd55f
MD5 982dced0f8a315db84371e4235a06221
BLAKE2b-256 81f6b8ac2082f48075109b0a8b45de52558edba7001f13e5ca4b3b350123d3ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page