Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ba37411de1fec78456d9189393fac091c87c5bdafeda931067d832ba1ea512de
MD5 9fb388a5df267e87faebb071ae1a1563
BLAKE2b-256 d53fdfd6988f0f2a7d54d94f8d8e814200a195bc73caee53c076673c934d0302

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7e91e6f5aa8c3ae3720141ada64d8369d6f72e4aa7dd5c6f29432eb27a0d25b2
MD5 be66eb1cb65fcd21f680cd55918c5501
BLAKE2b-256 c8cfb85f5a7f12f14cd3220a203c4ed2c9499cb67a9063ff8b5e18d50aa493ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4000826473cdf7be82296006505db06e9c3695e98c80c59458af5dabc765b929
MD5 7e2ff046c6a818aa2759ee2ed6cf8f62
BLAKE2b-256 857ac9a24c1c90935be13d92f54945a768f020d99941f93b97829876f7aaba51

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c8dfe4b8cc2fbcb08b7040f2476b47ee16c81e56231bb4e4b43faf8bf0755ec8
MD5 96a84b782f6e973545771c67c04a5314
BLAKE2b-256 4e8a5edc0393e3b0f7d220e35b6606aeb20bc4f749967c118d406901cbb81a60

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 22ef34dcd326f9f49f7005e2731ee758057a85caacb1a2a1e252f280a4d46e86
MD5 4702936b599e6d1ce7603e3c69af44c2
BLAKE2b-256 98386009f329d9543e7bc819e59ac4d09448ca11081c3526901d356854389099

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 067504cbd628aba3d623bd4cd86488ba38c6ce7651c428343239df1fa774b51b
MD5 ff9c87b5b7afc7de36f8ef9c26662d62
BLAKE2b-256 1c61b2f7c7860a88e899047883340b8426ff1882b55873fd3a43c32aed72ee33

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 72565d7f3ef708c212420b60ee61680f25e3900c82a6507a4600d4cfd59b3d34
MD5 a3f6f020a7e9bfc809c99fc7a18ce5dc
BLAKE2b-256 a5490ca2d4256ebe2998ab12a360aedcec096fe18d249cbf8dbaa3e056ffe7a7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 abff4e5d7731fa16a43f34fedd3103452ecb942b76d977fa7b68e23868904e18
MD5 0a0e05de1df832748eacb29966822479
BLAKE2b-256 8e052c02c18949dc3762597ba3b7b19b564da1562575a48d4cf4a52b0dbcd0f6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ec13256df404d36fe56d8d548007ee44ce99a3cc7c0f1eb9d4650ac9b139f6a
MD5 512e80c54becc9258326a87741c5c9d4
BLAKE2b-256 ff98eed57e2b651523c91ae5d557d7ed4e6a635476b3aeba01191a9a14e4b563

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e3741b3e2768e69cc25c3e95a873cdc7e6b012d8b265b25ab39b4e789acef78d
MD5 2b0f83d5be244cf235b156ef73d0865c
BLAKE2b-256 d7d3ac1742c705fa08bd3ad49abffa35df091afb7d1821c055b7cc24dfccf3da

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9529bfa4cbcca7f9b4cd8f58b15138900302b6ffed6e8f42b889728e3720a586
MD5 b7afe4f9428cab799ebe2ca01bf8a33b
BLAKE2b-256 9e15caebc0f39c049aab057f20c3e3bd1d7e5cfff842e8a65331b03dd5d9701d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730202550-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 112cff693ff4ad3ec32c80c40757f47b373bfad071f67fd3183f9fdbe4ae30de
MD5 076e86802c4851d25cc70174057f763e
BLAKE2b-256 5cc38297e655cbd68f3d41bd7f3e436ce9621fa4474b3fb4b8bc3503b7465167

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page