Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8a9d854ce69ffb6d51af99ca314b258bdd39f63fa4f441d1a5ec23913b19891a
MD5 d82805b14a69773a2cc5258f3d0fc043
BLAKE2b-256 f2f519aee2486107f5d3614e6cf07bb931a0b1e3615c60e06af7ada0418d19ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fb1b8b7608040fd09a2e8b004d10f342d137ec87abdc3ad9b824265de9e7efbc
MD5 3ec782718f3783cd8228f2ac6cd6c8fe
BLAKE2b-256 85e336e404186c5d387b85fdf1cb7383056914510d2bb42ae6a96917e556d0fe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 764170a34a1885fbb1592c5af0ae4156bd0ddcdd27892b00d838d0f05a6ea8b9
MD5 d5db1bf3751c4fae04a79dd9a4dc8913
BLAKE2b-256 3a5deeaed34d903b62f020665434e1bba00cc3d9c1b37799663c10b5aa894b4a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 89058763ca57d5eb7fb01227d4a7da7fed0eeb065fae3da120d16a9ba3200d66
MD5 5c72e205f8a21941a8cd693f295f60c8
BLAKE2b-256 d378db694cc15cc2b030a0c8a92ae19caad6de9aa1d2e46fc4ecd1af20adf1c1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4d7102a5b6d496f9be7182f3d4550b5e8ed33a76907821cf0a65893c6b13894f
MD5 d871f62e019fd91b3cef8b0da8e075c6
BLAKE2b-256 0777f2bb8670893e96c098883797019e640a570a16b86e49ba28cc3281ea15fd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ec8009fcbdf3815f018f23fc63eb5365f2c3619e646879c94f711b19a170adaa
MD5 a7d30f6c03b630248f5fdd99993765e1
BLAKE2b-256 876e49e19a5083e39db47b9acdcb21da6b25f907f4c17034dd023c5c51157b5a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 56153c1f5676dfa268f695810a9da302cae0fc0f5936a7d984d59ca5a4bdd155
MD5 cf08dc3327096379b1cb63962311feb7
BLAKE2b-256 dbe01e8da17b73f4e3ba9daebb3f841b78a57aa50bff97c37dd5f48c23e37e0a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c54807d369d86c3793c0ff72a4051ce9bba34c60d02fde390af08e76b6df3eba
MD5 c73184edd6827d7062c252437be5a965
BLAKE2b-256 c6c9fb9c7212dd0cfd75c7c05bb5c0cf215754c7ed31353b53d19b2c7a9f9ccb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 54f83b2a66180cf8df7178e0d3786ce3fd2158b49af63b31ce61381b3fcebed7
MD5 dffc1a28bec20ffe108e1d46f9a96665
BLAKE2b-256 e60bc016863bb2139f16749e7f0ae91f2c7459f440980ddce06077d76520a924

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5cd2ea944c0ab2b3e2161df6027643ef91c9861a8c3e562c51dee3f060496e35
MD5 f34dcbb8ec4cc978021e77737d6a122a
BLAKE2b-256 ac3d0984f82317a139695b83e5ae7ca08c83d89ff54d0504f65f97c327b5f9cd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 76645b258f0595ff5f697b98e58282d11d3733cd977f687421f0fb1f2e56e5c8
MD5 9105b21c4332dc38fafaefe21d87fc14
BLAKE2b-256 a23706af153bebeba49d903e1f32e07e94f5366ea6523115819b5acb65d8c146

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210802145004-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 769235b668b80d103c5660dac88d6a33917b1999b44394cac515ff34c4cde1ae
MD5 15b136c0eacbd574251c4a2166f4877a
BLAKE2b-256 84f9a7ec9654861825da6af0e758d42e65c8ba18baa38eabdab6d2946185a151

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page