Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c4f566e52512b70691a1f7c2ddca6ea72bc71e329d560d85cbafc3a4f3e819de
MD5 a3a2486946bcdbaa04933094762c7ad6
BLAKE2b-256 46b11977076153fa00b020b47fa73df9367b3bb63383fd4b0797722abe704b60

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 11d1c5e64ee487220b1b98086b14a9affb97c039c3ca51f02e26e0217f8435f0
MD5 de9717e8572fabe47990fb9329dfa3b4
BLAKE2b-256 9dd8ef8db67c2a0aa76233767ea3164f732f16194aad02d05d492a9844f19bfc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2bf1701c328bb8ea424273f4e4a2380e2185ec39144604d42a98c2b91531a9cd
MD5 b6db22d4fe8161fff08b48f4b25f9dce
BLAKE2b-256 03f5f5e9c5c181d7d68bf4ee60f569e75cc16ff9d9b4ee9d2aa1548ca8017ed5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f05c9c0d26e10cea0153146f7da8be4784d6b94c779f8fe0a866902c7d50d5a5
MD5 d431805595b60892e8e0f158f2b0310b
BLAKE2b-256 2118e249d47e0ab0a3498af21201bdf440753d07499b37f37a522f864898e903

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b15442153091707715f4709acf4b1e03d543c8366bcd8a08ed480d44c4908a2
MD5 796e7b652507ea069c37b32b199dde3d
BLAKE2b-256 beae38f4ef30ebd983607c99d2b52c2fb7750ed1d3a02a26cd2948905477b0a9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 93c73531ce724e05bca9d6216ad133b53b1dc2921d2c8de68c2f82735464fed5
MD5 699c12c1d6dcbd2534bd4f7025631544
BLAKE2b-256 20cee0729caac5c4400622b5449abfa8703e85b6cecfa33f9651258f4b9b7af7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae7dc29a2ad33cc9d74d06ec43eec76a5afe7de945bb1cc0ce1c47b04dbc49fd
MD5 a5aa615bd46b6b06e9744e56407fcdf8
BLAKE2b-256 e7cbf94941a834efefd0b18974e090b615872452cd5c2b27c18193acd14b5858

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 adebc006193190f3d8573305fc2e87b37713012289ec8ab3a9a4fb4ca2cb33f1
MD5 a3d85775d9b7ce8cb1d74b5e78d49b5c
BLAKE2b-256 534b08a24d00b221e52543930e7f3b1694e0aa8ce998e8e28f8e3f12d35e9828

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 56a6fca562b2771cb54553532ca431b2c5710caefb97e977b04cfa426a1eb8d0
MD5 53e973bfa4366fc9adddc7fa0041ffd0
BLAKE2b-256 0a7222a56ad0e685ddcebae7ada95d8cee8bbc203842307e6c2545b91792d24c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f0dae4b6141b3167ad30f666dfd7a9013de5ebd05621b6b18702d4391f74179c
MD5 3368e14025e0a40d2562868e70881717
BLAKE2b-256 13f5d9712b7a27fe98981a01c7df3a3e6b291af7d41e589b04a44671933cc4c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e7aa221058f30eac637d1a95527031ae37334d1145a7f5e99b1777e195566d46
MD5 fb63c5f6300504822efa4b1897651314
BLAKE2b-256 79215e3e352399e6b5d209160eb2de194a09386f879923b486cce71d62fa1bce

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210811230705-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a0d220c6471dbded3df318e2678604dd7b8eb0491857ab92ef4e748181c55092
MD5 a1269944f03eb020141f1a5d7e88670c
BLAKE2b-256 baa1beeafd8c8c39ff65bad4d6c71b0be30dd6a1e3ef41d1f82d4aa2a829a499

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page