Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b056bbd1f7787379a811387c5f84510165f6bf351199f11e706a3db44a832189
MD5 92402a4d732cd0d0b50063481173ea7a
BLAKE2b-256 447131b11570acb68b588cb11d730c1e50b3e1a91ee6a21c99919da2cebf045e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 09c33ed59d6eb6a1eb844b2ca2a0c7639795c92efce70675a48defe0a3c152b4
MD5 50917d168256f33ab2a389affd74ad25
BLAKE2b-256 2ca1c7711db1c981826ecdd516c80f5573ba97d44afbcf4a4770a0d559d4d998

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d5787e4f455acc921ad2df46473f0faae3cda13273736b19b50991272a5d6e7c
MD5 dab1e7f44bb5c274bbc6113802568ede
BLAKE2b-256 0b628c5cd21aef02616765efbe2152267101b7acd1788dcdb32d6e40892b594f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f6aa89229c09be78a9d26467f1a1b8f699ef9060c5b6d2a65fb6359526d9fbd4
MD5 9bc8dc08e29d4ad0c117c8f0ca2b51cb
BLAKE2b-256 7899ad903d4e80fc2e56fa816f6f58511484d48f5863d717275b40f8c071b4b8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef26c6580cde321e69ee27b44812aa1c0273115ebde07f14b14b36c9d856b506
MD5 8851ed42fd3cc5a38b150041f4fa6782
BLAKE2b-256 932947415f2dffd63713eaf36762dffb4cb93845c40e54bdedd53dc610428e3f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6abc2fba7cb1839a2fb04bcf49480ca78f85ee6ad7a19c9d16aa64e800a6e1cf
MD5 9da1f9932cfe91afa2f450fd96d79ae7
BLAKE2b-256 64f178dd9c83fcd472da472c7f2223c91fce1c581c6f9cecdd5ea5dbf9480ee5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1dcd7d33c595234cd85bef05bed53531b8ed928dfd27be49038c016d551914f9
MD5 e9f6afcd912848fb9775b4c3019aa4a2
BLAKE2b-256 3e43dda0f6bd9eddc2dea19de45f45e66758fde293d1caeeaa804601d8a6f6ec

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 db5d88b263225fda76e0172afe4cf098898851f53ea0df38a31d222964ac0284
MD5 6f03208346bce0930967c6071a32ef28
BLAKE2b-256 96161fa9b4aaa74402bb689e326b4f22a4028222995d1e3385179c42490bf85d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b00f80c4911b5129a0e15855f1c1a7b6e42bedb51aca35780bee848f9e55c23e
MD5 173c963433abd80ce88d21160463ab7e
BLAKE2b-256 387da4ab8786514374724f6ee40a1a8685263af7ca7432eaf624c7c1e97c6e13

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 99e90f60ddabeb4f4225680e71595301fb1bc44761326e6fedbbf1041280bbe6
MD5 e4a21d059ded80a314bd5c58ef043ffe
BLAKE2b-256 5a61afa000ad8d06235921755fa2695ec1577a55320e7a2d7f72fc9f4dbab070

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 abc942fbfdb42e910afdb7ae5ce4b44bab007e0e15cc0ac8d7db053e69b7fc86
MD5 292a9de79c37b652ed936bed8dfb6460
BLAKE2b-256 96be66eec959ab1bd616b340aeb5975c33cb46096a206057d1e0e9b0bea63e35

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210815170710-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6171a9a0445fc93ac96aec18e3f485f52590e693a95b131287e59f5ee373861f
MD5 2bc61b6c6c1174c79eb67dc9549e3f6e
BLAKE2b-256 aa8dbfff5dfbb018960820a5fd8391d5b79e63daf34df8c050aa9ddc8313a9fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page