Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ffe54a8d78183eb9fcc102b279d0ab166f7a8b4375131d4cb428e4d754411eb
MD5 36ae4d978ee1a602a976211d9a2bbc94
BLAKE2b-256 2fe55c8f6444c71575b8e2f59a4da9a4c87b5c59556da5275e9be5ac0250ea64

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 38d215738eaccf721ae03d40ab054216e7a4c8b1dc5b2e9bc3cdbdc714be3075
MD5 4d76e7e3c5c4b0f9aa95b6e2fd7dda14
BLAKE2b-256 c824ab3ebd218868c72233feb5f5dc8a9149bc94fd07aecae1b2c4744cd6c155

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 42d56929e15d108f21c24cb007427b45637ea04e2ab264332703801a8187507e
MD5 edbde2f9548f7dceb552eeafa75b26bb
BLAKE2b-256 cf14c638daecb9255ad2d1d6ccdcf389eb31b0510d4cecf59b298c295254f8d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f9803ade7dda2653963eed00c50bcf099fee78ab284383e26b2cf8fb09cd0e64
MD5 95722884ead0debecb9f236f12e59664
BLAKE2b-256 e29b46a571333095086829bf0a45ca23118db2e4db1b1ebac330a3357f63fd97

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c8a87994f5411cfecbe391350fdb4d858b95c4259ea4f55a26429f5da88c8a9f
MD5 d1553be0007960b28464052194c5621b
BLAKE2b-256 3339cec804eed0bf561639bd99b1a6d993367571a454a94064aafa62c39f1645

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 627dfe6aaf23fa88ba55ccd613ddd3eeced5bdb887d61860432e2cf86e5917ff
MD5 4f8851c48cae80699dceb6c3ab4d13eb
BLAKE2b-256 baff195eee8b72dfae65e1975acfa067e7d4ee33801929fa9fb5e39b4577f8db

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5919608b86b9d60d5e9069cda54aa150dbd53ba10e0fc3c95e7f2aa53ba43f36
MD5 a6b683aae69fc60c12d0a2833f60f23c
BLAKE2b-256 e4ffa2b931c00969af136e0e97f5ed44c9ad1c4810c0c5b7e85544ed34b20ae8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8b299f24dbe1e5c495b775b1f061a91168af13d88429e16baedb092b9393fce8
MD5 fc9877da3f0c94930d5fae14ee36e8a9
BLAKE2b-256 c2de3a314f1e6743cedf452ae40420b63e3fe2fc6a026b8935f884aedbeb8bbe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 926c58d076fc827313a9c0967f5eb4bcfa9f777ca6dfcff72e47634cd88ca0d3
MD5 f409ad0aa285f8cf5f7a99e513eb6fa1
BLAKE2b-256 5a2c06bc3fbb17811df4972b7a8a8dec93e9d727f5150262a932852b60a2e8e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 57b2a57912821ce57e58553654d35b5fbbcd8c7824cb06a66112a278d4a19ae7
MD5 06669c26e392a69ff715bb93885eec16
BLAKE2b-256 138d7b89952131b096cd6873a32c85163f68e4f2b29815686daf6cd242439283

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aec59a0f922397b99618a532075972758130c2064f19e42d87f06a9682fe8f3f
MD5 6405228006fb7c950a5409756cc54a28
BLAKE2b-256 984edab4dc6376345788ea66099a62635ce88e86d4519c889d19761e2de93309

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210826163931-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dfe5fd0588ecf4c6647666898012e1e1be8c2f15bca92c724a4f066ea893c86c
MD5 66b5081d7e96d36250dc4b965d57ed6f
BLAKE2b-256 8a9f61a7f458b6091a0f83212f01f03da59122e7143847facaa1cf49394b9c51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page