Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 20985c08d84529ca5cee09337ee282e9f3e0eb55e8d9cf116a5564c2394056e8
MD5 586f34cad37f134c72f88c4c46628d70
BLAKE2b-256 143977200ab32b44dc0c2cd0db93130524d89f94a38918a022e574131172bdc2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a50ec868eb654fcd074e03dcad0e96ab09852c54ebf9db1e8a6222424670ac49
MD5 ceb3b3356a7b70d20763bd5451a4424c
BLAKE2b-256 fdeb3ae5d75f46df0135b0f7325ea263e44260577defd528a8d9bb8a417159cb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f6df61c493fa7f7101f5c1fc88ca9bcefad8504fb80346c24e1e2334ac5ce72c
MD5 20326a3d163a02c8a7b4b2071cca3886
BLAKE2b-256 cfdf937755ebb17938dfa8a870dddf3c496f0e09405f0bba9982bcf5a06b5589

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6e2ee64e3b4c5327dd74635cf94600669ca15bf161c15c9be922e5d67e2cbe2c
MD5 159e06308e2a47c1c8cd464e23f2eae9
BLAKE2b-256 0d7f3fae779ddc37bf48186da1fc06191cf2d97484891b4ae3ec12c37dc9cdd1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bf3d6c55b92e139ca789913f2861d909b9957f18051b0b1918cff1f5f2b36220
MD5 31ccd5ec84f0bbba4e34aa1eef325dbd
BLAKE2b-256 ca658f1ee1bbc79149d1a8fc102883913c9847580dbda555cd88f767672d977f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 627870d6f67de22d1d55336a3bc670fbe93a2fd107c30d0b057a27b004845261
MD5 5d54aa8f68887702e8efd6148fc419b3
BLAKE2b-256 a8834e13e0b2ba895122c204320470d4929fa960fa587c2746dfc93f2f6f2862

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e40ad3c304109f913244f398d2b6c34d990540693baa46d5f25231a53a16187e
MD5 457eebda4e4d58b65da445631c100b68
BLAKE2b-256 dd23512c4662f4b0e8ddc644738531c6748d42a62782aad117baf5508e8b154b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c4b5e35a552d1d0358f91d59d17faa14da05b6eabee0fa3c4493b7eb94a3846
MD5 3d16d538ff333c017065b9e56cbd7375
BLAKE2b-256 0bc856672f39ed959674e5b853c9f539aa86f0b4ee33478252c7c785e691d103

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b479b77304777180a18daaab621eee39048296525f958a4b8ca96f08b6a96ccf
MD5 397b700662c3a4987e5d0657ba12394b
BLAKE2b-256 142469872fa4b83ac2618e0cf52c81021dd352b8aa4cad11cd7870f7e1b61c4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 644cf6426e2da32de74941e4908a622a97510e447a0f01823e22a803c10f50bf
MD5 64d62319886f2c7c556770e8b3750bfc
BLAKE2b-256 091674d20d4d48f2b2be1f1f59e539141ee879ef988d5e8e20d7068efc41720d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5e6989d4dbab2afc39cef274548770a8f442a62d01854fe4b86e7da79898f581
MD5 00de6f9d9255889a91ffc0ef51fb97dd
BLAKE2b-256 85aed71cf99044c0ee7a59ce8c46a54d8d8492bfe3a04cd89c390491615b44fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210912234051-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5cf5f5f0d3f31950af3af84e2f842206cc2dd017dbace94b46814de705100c87
MD5 40a68b13af7ad4386866f56f90a6811d
BLAKE2b-256 c04664d5f73e41318e8e75c42b476eebd15fca6ca75e9eb2cf99249c43323918

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page