Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f8018f6a4b9bee033db835197a7e9cdfb35c08a68026f839ed7c885bf6b7cd9b
MD5 2126d97cfa33c16f145e58ba3afd7010
BLAKE2b-256 92008c9ae06b7e35cf3569e83cf5811894d9d426e45680324cd8103511ed3b4c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e16dca9e8469efc4657c18dac5103c932a94899cd297ff1992689f806bd90e05
MD5 93a8947ac549c105ba43bef2e7590ae4
BLAKE2b-256 b75ac7d5f5b94d6fcec0c61ad1b5007ee1dec067dd0de0b7a44530ea3f030b9d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1bff828e5b02cf6efa93e316eebe56c485d5e7cd220f9eab575736796711dc6d
MD5 84dd1c944bcfdfedf822b6c8e021c64e
BLAKE2b-256 1f85a36d8c751bdba6f7270e9e8456ba4ccc753ebf1fd032fe71f73a8eee3ae2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 848520cec2c1d42140b5fa5662efd02be8c7561cff0615bdc4cfa658146dce5a
MD5 33aac8ba244d019b43795c8880c898a1
BLAKE2b-256 9e5078ab9c04d8d7fd0449a9b50c20b9be2c4869ef21ee46137c80fd688bc2f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 69fcbfa4f86dad53f2249bef35e077ed375e073a3646ab0418f35d496aa0da7e
MD5 f0da09db33cc6101f1e091d8afa36190
BLAKE2b-256 6929b5adb5317745d6071e3b3b068e5f019794c5e1328b3654ccfeb60cb34d8c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e0f6c399b2649cc4cd7b02caff58799884daa32a39a3b77856a8afc5d9effffb
MD5 a846e13d8b31c16cf9331978b51b1feb
BLAKE2b-256 e63aa366ee6f413b50328f70489b279b3db4bd6790d90eb04230d0b5a6e58003

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 88c646f3e8853d80d832ce3e13815c2a3828a010874966cedf779c4bd66df920
MD5 8ab2c47802d95d00bbc07cbd7b1a5493
BLAKE2b-256 a493a2b414a172bab6413282098ca169ecb3d5d2979d2d3b527eb2c617023dac

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 47384f2e8908d08552db82e46da3deaabf92ae98173143c0ed1649b1ac7008cf
MD5 ed8916bec11446f2e179962827a2464d
BLAKE2b-256 9fc461be9f0ac8ba87b543415a3e6f205d92bae6073aaf8a85a4aa83025f4d12

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3a378f5235e3ebb2fdf3761728eba8fd2029470b7e822ecb3389f7a84e3ae192
MD5 2209876e9e107694e4c49cb8c56fbdb4
BLAKE2b-256 a5dee258179dcfaddbf18496a34596316c701c87a0257cc2235d19d04743ff11

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ca2d09a0b48ab9f1e0bfaf5491f819d2c9b0e03aa0a0612c353d28382018ab5c
MD5 5826224538e57e444604a0d4603f88fe
BLAKE2b-256 411ab777630c1821080a78be7ada49a27529f8fb9204945d52058e580f832fb2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 93d9984637e742456dff990e0c3587673418c4241eca8a72666145041517d788
MD5 274c741709aca0026a83f630f75070ad
BLAKE2b-256 11d41bf50a29e89bb4fa8e77cb49d24159045822ab59b7e3eebbd49d92d1f1f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214201556-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 03704850cede3694133c5aba8a99dfd0287e8a80c0b65fd101affc906befc35c
MD5 4dac5280d84563a878109c3899db955a
BLAKE2b-256 0949769c6b272cc8385ff5c16f84c37fb9b4c061229b29a173835acbed0534de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page