Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 84821e3d82e5dca4df83748a932e1d3a9fd25b619ae97e2402bf8b5607b85edc
MD5 9b621c5e24c341038668f5b54ed302bf
BLAKE2b-256 4cd8eb13ad2cc4f91e3cb551ee4adc51744c76a403976ba09fc207ff3ad46c09

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 715874ee8efab8ee98f1aad85d377117830c5fb0df24f13c0f827d7af0a75d05
MD5 0c9d24d166003870086f47f2778aa2b1
BLAKE2b-256 d55ac2290188c997b0289ccbff291f207bb190965e31c32ac8af4cfe7ac6d450

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 505d0ceb6fbf437d6c0c3dfeed43494e9d404d9fd33483860c8affcbc59b4b09
MD5 4e405f4fea2d7a9bbf019109851728f9
BLAKE2b-256 26d39b8111ee62b923d6ff315a7cea7264619603d5870190e82915b931d7d837

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 05dce2aa45fb8062b40f544c90fa4e62188bbb8ac23fdb7c100fe19e1fc19bac
MD5 57b3ecc59c6aec1188fa2f74c19576db
BLAKE2b-256 745e0dcfff99a21a04c393c01fbf0ca04cb87c6e87bd51228fde0ede93082f52

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1492433254bfbb6df2f6ee365587c2d1980dcd48817055ebc28759861cbd7cb5
MD5 b8e1cf6fca72026dbacec5f6496e9a1d
BLAKE2b-256 e7365e64e3f7215b489ad1acb41059201c5fc4cdf032c358ea58c04a28bf3dcc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3872002cfb504dc4554f4558420068816cea5d1c60f82d6c8be81668d296b6c1
MD5 1c86426c64753e140346244ac118c1c5
BLAKE2b-256 9b78f7126058b15bc25c268fddb0988811543316c9717e53008efe76879a299f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c57cc2c3586bbb12b0fda81834f57f29497127296ae867fb23c25ed0ae93d98a
MD5 52408500259b627e87a0b89936996857
BLAKE2b-256 17755eb1ffa7effe781eff7a09a1cea1e3fa4997b0b5dcf1bec27da0ad96ea8e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1fa862a2cfe978127a5e5a3fdbd4812d80178940c5b3be6013db3066df35db10
MD5 4e85fe0ba3ef358eaf2193c6292e36c8
BLAKE2b-256 ebe0b1c7ebd19ee62e68a424225c3419b9eeb8e6101621c203d005656f474ef3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e94bd58c5ab8d7e2d06a711c7c61d40092e0c5bd1d1aa735eb03958b2c143752
MD5 e8f6f7e027f497f579c9a2a5437ffccd
BLAKE2b-256 637fc4dfb35145b7e1de1c9a6584c17bdfd2c86df48e44ae42299aeee68776ce

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 261d1dae02fda59a48d27b4a5b340d0cc682de9eca4e32a0a3902e51eb07d274
MD5 89aa2b93dfb9394b3f4e793e5272888c
BLAKE2b-256 6420312bb556ecb66d024f7981c425953bdb90ab9a0f03fa488dfa6599b43a03

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9987cff0f109248ca5a8c8085ae54ac6260d75e249c7a102d7c4d9963917126f
MD5 88687872ca2b8052d1830a591c1f6e4b
BLAKE2b-256 6236055ded463ad0d82e16b433bd7f7bbc647be2a9dddba5b5b92bb849d4139b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220123202447-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a02fc22be2f879b7d44139fbabf0bdf50a1e2d11b7ccd2901d1b774fcf5cede8
MD5 871ab23007f9bf53f02211f5cf88d095
BLAKE2b-256 1bb16ba7dd81cb1890ea49a2262f0b6f66e16db3b39071712f49db073b534cc1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page