Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0802fe9b16a8c469d73a818fe44a95beed8a64c143a12895b6bc31a2114a6a06
MD5 45676336882e6e4865c5d922f8c0b8b1
BLAKE2b-256 5cd660e4265c2e3b77e45a4dc9707735cef57d8a75558f13c31225eec5f192b3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0cfd9f41dfd1097e022480afce9a75825fc6167e839e2df6bd8a141bcc8b51bd
MD5 e424ad332525d4de92992723fb144183
BLAKE2b-256 73f0f3fac9cd313e5230fca5f8133ea9726299268adece61083cab8e177fc91c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0116ab7b3a1e17691bf9625898b66591a0970d6a41a02c8149834b18a5f878de
MD5 3041d16c7b5c7ba8257cefe9ab0cf174
BLAKE2b-256 2169d12947781f031878724b9ba55fc617f2d5d4515410bd7aa605da6a2af998

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2fec68ea860766af4cc08b86e72ec4ffeb271e18b2e541a086e6bdf24c4fa657
MD5 17999dcb4674608a09ee4d46b9ed8528
BLAKE2b-256 50fed15bc407262cfb70cf6c2580e7b5b5cb72b62e64bd00adc9c50a4a923525

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1281d1e3031fb3e3aab0e18da8ca9b712a99b99b3f383df7e10beb42c6ad1327
MD5 4f1a407bbe1d7700a6a527278149f844
BLAKE2b-256 e0c4bcd5c92aadac6c0925eb38d560f40fa5d92e0a844f87c84d35dbae79646e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 47ea0fe1c9ffea83293d079f306370b9eabf0ab0546cf1742c787652212c9b24
MD5 a292e049e5589a518b870d0cfd9302ca
BLAKE2b-256 8036d93f98c4636e6d96560b2946ade831df03fe6096f95054a2e3aa0550c082

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3c3c187564c084cf5a59fb0f6ab0ed15913eef6fac0466333116d7a97f6cc83a
MD5 80766c5e79abd3455c2b2cab4d84974a
BLAKE2b-256 6114a5292faf09acc4956262b16239355985f16883f2425dec420ccd705384b8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4ce3981e4a3b4f17f31231f8e87d14c7f2bb048acf074d6672ed1fff7ddec806
MD5 508462a39c7983d9c2950750cc03f5d8
BLAKE2b-256 ab0cdf589200c9e7d358200a9e527b11ba08dbd9d8c46e9cdbf1f573270b7f6d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f9026a41ebd06bc2b9a89a7fd8c75e51a3a4c0fa2b50824c4371cbed2947ef3
MD5 8b66603570abb9238018e153b936283e
BLAKE2b-256 f52dba972aee80e11d180b6abf6ef936e2dcb27061a067fc105fea785e2d30b0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b495a55727cf517d95b84039e23ee2a0ab5cdc28dd815b955035a4ee3def2a2f
MD5 dbafe1a73d8d3a5f801ae4400e6c9ff7
BLAKE2b-256 abb4f8b71d6599d033288b32e48489c5e0f12dcdff943d95ca9f5b4120f3385e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 66cbfe83ddd685b10fa3facc57255cbfef553cc8f97533ae7b03004189b93307
MD5 277f316471a75cbc9fff3fb198613ce9
BLAKE2b-256 299d3017b3273c7ad1e464af5ecabdaac845186991f18595c3fe2d1272151c0a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209175718-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d53c92825c96540efd4ec2a27a8d29d157aeeac5133db620fb70dfc9baff07fb
MD5 e17a213cc0084ef8f48fa021a8c82e4c
BLAKE2b-256 2d7a70df08e0248e6c4d9a124ec7c4f4aedcdc8a7a4dc408278748c5b4d140f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page