Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 865607b92acd5a86f8cde086a2fd5b782cd8f1feee924a8a31c0007a53ba34dc
MD5 29adef9b2b24cae1ef587c494057a961
BLAKE2b-256 35c1000757ad00fbb07ce895b7d3354cbeab524582e90bccd810d9f68cf08d65

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6c90a2568050af73d6893461a7ca05150b89b91a715e4e77fe5d42eceaa3feba
MD5 1a34015ffaea969e366726aa1ba02f84
BLAKE2b-256 2ef0755a143c6955a33eb4ac54d344e5469fef0434e2a3b3147b7ead151ebcae

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 832be2abdc67b26761e5083ec4cd81051dc4dfaab3b79b6e8ecc567e6f1b2053
MD5 89b9e48aecdbc8dc48a8c64e5a221b6d
BLAKE2b-256 0c310004c8abd3dc24cff9fcdd75bfbd82315826c186c68d5bd0aa5238ea5507

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 16b70f4ce478faa29010c5ef5411ff0839489409a3149ac00b2651f22f62a3c3
MD5 e31e40f37af8bfc76fb1e858d572a548
BLAKE2b-256 8558f8c3a600d26a5d2aed816e36dedbb1f481c9f25bbb17aa5cc3ce526906a4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e129ff09229d90b2c7efc816ab35fb2468dcf269aa4635d11bcd7840acbfc939
MD5 df78a4267650ab1264e4966cae1fd710
BLAKE2b-256 03020cd26463ef51ac4f143b3481f157365a946db561dc1433eb66c75e44be71

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f979575282dbf4178c9d22fd5c25bd9dadb5a5618087b9a40408781e4923ae21
MD5 7b6fd30fca57b61cd7c8b00b7dd45c0f
BLAKE2b-256 1dc9cf035305561ba2d224ea610b2a288682d996efff4bd5957c15ca71fa9c47

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9cf6fe512db9b7a75bc4c472de14e615cdadb51080d4dc2e9f1735d2e94c216e
MD5 f5fb839580091cbc8759bc9488b561f9
BLAKE2b-256 a55de8455af2f0823cf111a6177bef52dc8d6ec56a719f2e3af1bf521d92cf08

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05b8336d2c6bd99d9791b23ff18893a31975c4f31a4f53e29ab135efed8a6dde
MD5 1b44ac7493ff213f5b52d4ceb1544804
BLAKE2b-256 909f0ff131cb7133225fd64b1785bcd937fc91be1c7ee4eba939e42a62cea5df

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5c4ceac5364326a60ece9b82cb3f9d155042fef5b1ebcd6f381bcb7732d619c6
MD5 7dca7150439360cc4dc1658de15fac8a
BLAKE2b-256 7409870d40c9337e066f951255f7f4be6a613bab2c7768817c91128c53bfd932

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 370ecc3a64cffe25ab3509436e554d636fbd54f21e5bfb8f3b7756738a5e0502
MD5 83a9658dfb2812875dcc6e65d454fec5
BLAKE2b-256 c9e3ca8b633d5467e0f852a3fd9ee23022d97194511f8e7dca76cddd0aed6165

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8db037261fa67dc4e870bfb125171b24ca7977b358ef193c0cb7bd74b274bbb0
MD5 883c84fc467659d1060570fee3ee6020
BLAKE2b-256 f6964e4fc3e8a25377be80f1b786a7c7d22bb4fb5c1357ad6e785cf88a15e95c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220215061100-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9931c9181e7c115f1413839a60b34aeee445ff10bde996d8e5ee20e1fc14eefc
MD5 8b4dd798fce0f447709e250bf79a7fb7
BLAKE2b-256 c7e4364df6afc357e4232819dc2e66cd4b16994afa2a54ced5b132320737e7e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page