Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 de0f30c5d572e34d71d19e0ecc179e247c968be2c420a9d6948b348269d746d1
MD5 fb9dae2addd94071db256c0db51c7cc1
BLAKE2b-256 3ba3ea9a26c1ee51a148aa9cec655e64e682dd8b17e05547ce98b36b19dda502

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a20102ac26d883684bbd65fb5bae0a65035d1e2f211810b52d4c2bb4522c1a2a
MD5 8ee670df8ba6ce10fe1604dc9b32a211
BLAKE2b-256 298ce9eaa15123bf2343878860b2f637ed5cfa1f1803a6188a22c79a08b25e0d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0a922939e35aed168dde5102dad54891c2d119db6a19488de49b79ee18651786
MD5 4a0cd3c0a54e3eff80e53ac2bcd78ea0
BLAKE2b-256 6808b9ea5f21c5aa142548c4d7fec5b74c515f70639177fb222db6f658ca93de

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e71fa7d7850c0d2dae6df9cb3be2da47d0669aed07ac6a09089cccb6b98d72c3
MD5 34986b231b63dbe574ca010ed2135939
BLAKE2b-256 7c06d86ef553535fd2469756dfd973e8625b5659919c38926840482cb4248197

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3236c77d8b57b6dc2215202115c1db84929d0b5f41be2455ecb60d32ecbfe7b2
MD5 bea5ab300fb1784099d57a65e6e06b0f
BLAKE2b-256 2c42862d98f47484bd770ab9df98334536bdbcb6cbdb489bea36345522d84c71

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3dc60f96fcf40cec183dad3e1a44cb3f5077f1e7c4c1803f42b5b41cb29c9ccf
MD5 ea38ab74c989babd8b9b80c971965682
BLAKE2b-256 a717434fffc2f75a3c089f92928a0f9b8d80824db8f72347896bf5a1fb2eea73

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4d26119d4d5fe7a53bd0e3eeafd57e2b35769738bf8eac4b75bece50e3fa4a27
MD5 0618c866836be8d67dc7cfa8a37790df
BLAKE2b-256 5ba45510106672a5768ee410fbc36a84124c376bcfb07495b474e1962141cf7a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 32804b83189c19dfa08dcacd544fb693b3e9c5799c111cc5fad3fe9a1cd9b6b9
MD5 9a068baa5d57ff657ee3be1aab3ada45
BLAKE2b-256 7f62f254236425d1e92820bf760ecb91ba2a93e4d9498fadedd0e7908242a1de

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 95da8289e89463aaa822f4caac5cd6f06f43570711297a438594ddda4eb997d1
MD5 b350c694054b5da0dad46d5217bc9038
BLAKE2b-256 cf9d8a3d0bb6c497e3968cc95e802fb2d00d6b8d13ac3a9815e82e670ac12f17

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9ed80206502b156728718f80d6a4f3e6e598ee6cac3858e5e52e6133aeaaa0a7
MD5 4de57c48eb109cba84e6d86e47145c33
BLAKE2b-256 431856cac33bd24df91d9acbd062675d4a7b11e12b5a40de06b7436cfdbe7f3e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b69424bd99acc190981e0f34f3e9fe4808748bc3d23524053fa5c530dd47c91
MD5 305266efe5fe726edcaa4dd1cfa6aadb
BLAKE2b-256 9a1742db0f88042637c19d744cca057484c00d8da5d079b3324313fd0b2275c1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163504-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5e4d256d9d30eccb30a452cf4aab6a5da0c1778e55af40a0685c1742c95af964
MD5 e87d32d3f22480f77275e18fe77a3fd6
BLAKE2b-256 cf09cc8ee141a16ac28aaacbc7f31b6ff85ba35cb382244f7246e82826ea984c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page