Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d91c94301d7979a04a38f5ce30479400e2702f3bba4f723760495d267057fc7
MD5 6cae4e35fb2e45ed40d5691fa4f0175b
BLAKE2b-256 a99e596aa7bc4dbbfd66abe498607c9b6ed138fbbfd5699d878262fe9d3ec575

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aac22973161045badcffc577e94ba2f421e35baafd237ccdf1b2da024c019b40
MD5 9adcd930800af31b6cdf264c37169cb6
BLAKE2b-256 e9b414697ac028c0991cbb3559590b0b7681ae37e36af6b603913e571e452b34

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d6ea0c6d4342809549ff9976c95b8263e152f1e7bcff936b444c7d621ccd9182
MD5 01b2bcda5eae6671114855d088c22af9
BLAKE2b-256 4d402380266051bb40321bef6f053552f025dee05ddaefa8feba358e7622855b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0d7469fee473cdf9dacbb70a99b8613abb9791355aad387073c72e09c8eec96f
MD5 9ba18303058b58a02eaeca2dd93506e5
BLAKE2b-256 c23888d3b8f7d21a0f6619c6886091e943d3b43109068092b4e5754aecfda5c1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b7c118df9204f515214b6baebd1cf54f9b1adc0be7e05d4d2daf3bcb86dba702
MD5 15530778e782f69c70150f22bc38cb44
BLAKE2b-256 ed75b727306b0091b655bab57864ec9933e86a3c33e4cb775a41ebe07f6b867f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 37e9790527ccf3840e2da6101bf70338ef1e84f97d207a28a428b9871ab56a94
MD5 73e643310527e1de4e1240c8f512a47b
BLAKE2b-256 ce2e5e242b8d2778e64abce7bedf3802b90c96bdd82d2108ec5866f8d808cb1d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6f2f244b9f1734e80cd7749c68e800eb56a0cbd481e354e197cd93c4966ca41
MD5 c8e7ca2466fce632505b3773fcbe147a
BLAKE2b-256 9a9451a05e9f31ddfbe96c2d0b4a77d390af85f061ab6642168d547fefe279d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8692f876d914a4214daf5ea124e920065b6d829036eb24df6f51dbece6a53ed9
MD5 268b9d3bd26a2e90e39bbfcd4666f0cc
BLAKE2b-256 4089e092c7d14e29dccf6f2ab51e938e72f7b0a3ce44d38a8c411900982ed171

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 35b155f01ec8847908973f672449dc4ed6508c9285e135fcd058c33597bbcf79
MD5 11d841e192f7f88b93b122cf464e234e
BLAKE2b-256 2ed75bff24f56a73336a8a3b0105c1226fb01da4d4860ccd0b5ccf122bfab8cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7e84bda4883dbe9e7aca864bb08f6a21f927fb13ba95c0db2a6f3108c6f8090e
MD5 f257acabad870a5a70df7d5f89b63d3c
BLAKE2b-256 ecd17e4796c34b5b88f47661cb1649305b1d0518221f3f487349461ec213f4ea

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1c7f29c9233eef3320737e824bf8987376c5e6a2cdd6a5deb03e628f10e4368
MD5 30e3643be7350a04ccc0252ca06757e8
BLAKE2b-256 d27882f3163531e088d1836b3c1d5581cdfe53bcb4850f6fbe6f2ae42d42eb6b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418163613-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 08f704c649ebf9b630b0e05250b30c1f0ce252477182a9c550b1a44160d8813b
MD5 b9abdb4dd14ecdf2b822e94e8a2b6aab
BLAKE2b-256 632835950a64baf367711a47e4d8f7429d980a29f4dc21358cf714e8945edb51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page