Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f5a5af309e082972809c1a518c8e8d933ab1fa8e756f22dc60f64c5af53c900e
MD5 47d59832c69f45a995b84d8197600253
BLAKE2b-256 c7c5762b63474f9d48e4b4b40463d3246b32aa03557b9d547b6df656263772e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 712c8a7fab3e54abb4727734352b27176b02add45987f8e831ea7048283e5d27
MD5 55090b9300eb501568a984aad38a9974
BLAKE2b-256 7ba6e850e20e2a08d513f40d254d2c1429aeed2575b93a72ad9f603bf339052e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b7fec53b93e0f23c5fc2403514fd547a29daa3432e0278b247e9385b10f92fc5
MD5 5bd4f4b1dce2ca9076133de4ae758480
BLAKE2b-256 8e9861a5dbc26bd4dd05d9ee484d2488825f40afd1a89ea94f058b55dc98e7b4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4f3e02dad42f05bfc62318034ba03075e435782894e71a75e86ee49e7ecc726a
MD5 d9eee76fed70cf005c9b45279f8f2ba5
BLAKE2b-256 785b720a94c555ddf8824e0026f08918c312967fb6a32e1375abf7b943c0280b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cce3549a62b73d21fdd6d3e4bd4651ffbad9dd2ea65dd1c730f93cae4f9a9309
MD5 c4b5643c74c38a83c5d4114b889c0a41
BLAKE2b-256 d409e936b2caa588863976ed56bf26562520a84ade09dc6e29a7a74231bc88cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8421f1a11db906d81aba774c54c655f1d1b1143b1311e3b96691523bc65bb5b6
MD5 3d767556faf72dbf6a8419bb05cd6a65
BLAKE2b-256 2f3c9668b8cd134ae974b85b3f9a08335e072ec3496ddbcdf4b047d5f4b09c37

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 beb61b6bb121fbfd0487a04132821c2835860b77ad41e701b2875401c69d3f99
MD5 509a014dde82dea7a5650319a28c7a50
BLAKE2b-256 dea661062c5e67d23e3071ea75ece5aaa70cba925fbd391b5785fabc83a07602

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 26a420e73b55510b8133fc9e86f32d488f13aa5ab45e87f0ba66e2091b41672c
MD5 c298e6279e860e53afa6ae97050d6ce7
BLAKE2b-256 25013bbb4c5607814c04ec3af2a648599a8b396e16686cb3c431bcf21ac911f1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9e425cf8ff9ea79192db9a9ee93312dc13a3f3e7eedb808672e242c42c595788
MD5 4bcfd37093697501873aa3cfb2fb9f45
BLAKE2b-256 3b11fe222015a47cd9855df13bbf1d32e9f8c157e41c74393fe7e189f951f11e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d7198295ec16c3eccc1ea05d5f443e19a3e24333e121b47b720147a87454bf9e
MD5 636b5d6fe914ac30a32135a12f69b10a
BLAKE2b-256 b758e7a2c9cd84f58e7ae639b4e5a95ce3a6e9e88a3eb6f85053d39d0c6aa61d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a377b10a770ce41da22e4ab3805216b063f0ba2038325c51ab1e20cbe01ade16
MD5 52174b97e78cbe71a2933be5fc34261c
BLAKE2b-256 2647a0556f10173227a02b6293e9bce384f01d48e5646f2fa288b5e38c21971c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510235434-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ffed23920c3cbdf262da4d4de1dd66f44d3caf30d526d1fafb0eed10edbe656
MD5 23d4ed2ca3f42dc2651d4ed03c356a99
BLAKE2b-256 2e658fbe59d4b73a86f050c481aca96746654fe4e66d620a86131f284b550fb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page