Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e66326f7ee04f859cea18d0fd4f7bc0a158edca50d52a1e3c32908bf1dee2b85
MD5 1cba52a479f47f327bfa6e28ae47dab2
BLAKE2b-256 c36a538c209c9557efc915d55ceae94c9d0fba82f81ccb8848c6c7a85efc91b8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d6e6ae8389af9559fda75d1af9f3c0ff5b3ca56a57a6570754bd443a5a76c98
MD5 363a52fdf7203d8f3309bc3db48bc937
BLAKE2b-256 b8a7aabf5df93956081e2ec96d457eee8cff515e721d7e5ef01991b5ab97faf1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a192d0a99cf411dcabe5b19d11a2b598ef88fda1b7c72c1f1640d952f86d011d
MD5 59d9231df7b40a0ed5343a337e64672e
BLAKE2b-256 924ba0d358b30ac90dea9eda7c5c8f6aa6fd7d138374df9ba955069cae790204

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 545e2103970a81136473aab25137c94b9cc77618fd800b804936ca43045a69ae
MD5 e36fd2101efe1fc3152e23ca3f893906
BLAKE2b-256 d2d62ba930ef2c3b241bed8bb0b8ddd7fec07922f9ce722bd35fb4b6422ea06b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ae82bc5545db28242c647ab7024998566ac957337c62bb7c4e1d44c1df829dfb
MD5 191312d89c6a3d096ae467d28d55c9f9
BLAKE2b-256 7dc36c7064fe951226c112627799e7fd6c382147e2facdaea3f70dabcfa12455

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4e9cd5962640ed8c92d25cc4d27da5246a42ab9cd93bb799783bd362dce2aced
MD5 2afb3a563709f8a726d7792e6c2220cd
BLAKE2b-256 f6969cbd234e709afbab0276fc7962a9b067b978b768097452861faeb4f6632b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eff2f6c9b208136ff975a5b68ebaa0ed43ea681267e51d54fce5e69a12de0912
MD5 dc3e4bc717b4acd7e0967e35e2cf118f
BLAKE2b-256 fedacefa9e415b8536d8fb8649b0ad41ab77d3d6516ccbe16b060a4c559ff859

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d6ec0b64b30095abdcd38a62fc763220edc80ffe5bee1611800f8cfddbb45578
MD5 3fe4c2a9e8d69b3b9e22c1f539f67e0a
BLAKE2b-256 60d3d287714014f1fc7ce40181fb732aca3b8cf09c3b87f62bc923a341899d06

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 db057eca1c57bcbbfdbd074bc395cdb735c8e38c1c1e8ac4c4c3974701ce788c
MD5 e8b01afd25c451162e013a42af708c2b
BLAKE2b-256 bd31ec00170c1726787d84eab68ddac4f3a9a06a4192f70531a3c745fe47ff24

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9b423bd3cc1959ce992d0867e101484fd1d18d85e197bd1582fb9b58c701c26e
MD5 a2f5018ed9afacf1d5cffff1e71d69a5
BLAKE2b-256 a1abb4e8edca3ae8ae15e9f3a175d81a88834ebea94d0bcfd4edeec5933c81f4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0bae2d3367760d7de885e00a2b038dd13849a3d66c0bd0b130988d669abd55df
MD5 7ab4c8c4460e75e3bd16aa3d164e2175
BLAKE2b-256 f46800385046330a32eb7204a0bd77531f7ee4acb02fb95dc449ea6020990734

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220830165253-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6dd15bbff5050f28f1eab7f63a44a6bef5a5d32113bf6e552d6b8d94c67fe8af
MD5 2f096156e46b5ad46c53ae9a3cd59074
BLAKE2b-256 08569b56d1d232cdcc0f687b40b07e09bb703b71ef29da252012aaddc22236ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page