Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9aeb87d3a66431b0986b09e5cf1c47a7a883d10b2a440e0b05183986a1e1da9f
MD5 2b4a6d759f8bdbd84d70ea974004a1d0
BLAKE2b-256 d62a6cc2a18654ab48413428a648af5869133ce9ed60c7248167404b54ba44de

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f40420f1c2eeff08126c90c5380cc936b5eae7c36b0c9b991e74caebddaa21cc
MD5 1b6c8ae5774138f2606a69d02d48f724
BLAKE2b-256 c4b42cd0de5e5a50ea497a88832c31e041079ce9f858448c22bb992802085e44

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 caaf4d44d03bdbcd9af3d8ca88e2ed70254a2b82be268e321a054d37325f8ab3
MD5 bf478494cb162416393a9f852fe43e98
BLAKE2b-256 4b0731b33f840371cbdc5586ccddc976a3834a639033c69dad944023faec7ae0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3aff4da758c0f38a236e275c09a831c1b318538afd25184bace2a3e17e99f2a9
MD5 b04fd8637e90e21573a2b1c911834d63
BLAKE2b-256 c8b43bbab39340690bb182518670efc089b6fdbdd39287e96642dfec2460015f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9f5d8728d4b8555e14f61afb5383869fa6a39a5c8f2f0cb102c4efe027dc00e9
MD5 9d25091d0e2e901ab69ddadc0eee5610
BLAKE2b-256 93b44d3e2b24f24668567f97db3bfb767f6b3c2c51489106881826ae7cdbb1b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 52ab3e76b386875d80f42b441ddca756849a12f1d25d22c92601d851a361119d
MD5 9d5f8bcf9fc0cf9ba07b6edca3fbbbc8
BLAKE2b-256 e54b8620b3d132f1cc6ce5190bc48d77ba056bbd29f7fbaa600e121bb064e514

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d5988c896b60addb58e63dbf820ab3716c0968d9c996702ad9382b08d2c00c3
MD5 40ebc371e61ad366223e9b2e0bb6c641
BLAKE2b-256 9601d95b7be08e7e545a74d3f4ba7538ef18d840f985d01f4d6e323e7577ed81

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2669ec3c01da28a19570f96f44b760ba95485aad63f9eda28591033928d2bcd9
MD5 ac96818c6d996645ac1a3fe9fdbbc033
BLAKE2b-256 98a1dd38495d6592f078597d5e0d868cedf27ef7fac71a751567e748243c75db

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 de024ed2d9a3a6c6d9d2e8fc7bd42a6f14a895f8da2adf8f584f063e0fdbc23a
MD5 351ecb3a4a53414cb59115e9d2b4df32
BLAKE2b-256 ce5591e0dd9db7141f8220a0ba901e23b8c70b3d11a2b82488c5799df6cb92db

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e24f7275262291c6a64fd204683c2d25123eaea697d8d64d4519ed54c5d56a0d
MD5 60471f4614872024aa8d20c123af49ce
BLAKE2b-256 c155c52839fc3eeb163d59369a2a7562e1bb44cafe2102a4c3e0883789fea582

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 884cc772610b6548f6403be8a22740369ae3e74d0d1a01fa36550f990484d8f4
MD5 4c39a278aaec3d3dbba888bd99a326a9
BLAKE2b-256 8b1dc5f425149a7be2a0e4f22e53985bdad547234a7f0d6c0fdd520bcc3b3f81

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220907144918-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f7c3ef3d727cfb2ed2d1923a76ac08b6e4e07d2d9e5e5509820c8d6b1a7f321
MD5 9e3ba28a12700d11b2350a4be9a1abd8
BLAKE2b-256 a0a586e6d67f072431daf22b57bb7c7baa8e0aa9dac5c005582d374a764b9033

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page