Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6e819fc8dcdf6b9d5eaae8794596af7e654d1b93516412f1d88becdc9950209e
MD5 2099ed5a5030c5cdc7d7e5d8896a9d46
BLAKE2b-256 fad9cbe80767f12fdc25cd7406aa4657b4d9e5747df2ead12cf95933a9834ce4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e7f29d39b8874588ee8779ae70fe477771c668780317a829a83f8c65f5c8da4
MD5 d3c9b599bd2bb6a3ff37b9ae03a3090d
BLAKE2b-256 d4ceede74d97d0584865ba4470c125f2c6a384d6c36d7832d6072036c1867142

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d70557f23f8f31a8dcd43af567fe8cf21ddfef481162d2342e74ec7adcbf97ec
MD5 2c9738a7e286913432e854bc4d0ccc91
BLAKE2b-256 8f33f422459b220fcb445442fa14b75d60e283995775332bdf981d308e8f2a0d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b3462967a7f1ed14aa812bfdc39d9be5454122638574b1a7ab1c6fab0548cf2
MD5 941d9a5cf900c6c05053904df53f6926
BLAKE2b-256 2c79f2ceffdec5818706cba009cab11dbcb9f0f20d6771f73d0a6dccd3b36343

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 93beeb206ccdb706a197b434f3c8011a2854a147d82eddb854300811759629a3
MD5 f6fa661a73f18069647216ddcf7d1312
BLAKE2b-256 d568bbce527c399fb6f95026ac54a88ac4c638d7f13e77aaa97e339da62b89a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ff23c7bb428cf0f61834fae24c3fdb95b904292f525d4a01f1f0813cf2a9f3e0
MD5 2d65ab8f4b61307869a17960a84ddcca
BLAKE2b-256 c8692754726b3d2688aba2f9b7232580dfc0eaa8f2db39c10888ecf6f719bcc3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b74ee304da2fa19a620fb6dd9867f1c717c39f860b5c89bf52ddbabacd814f4e
MD5 a79e5e5658401085bf7d6e2e8c29857a
BLAKE2b-256 126286462b599710e86c2d913bfac5a0215ed9bb84db18114c4ee1f8b4abb740

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fc34766967ba9a44f59a11d81536e01041b98f02fcdc72e6a7b2d517f846e70e
MD5 7fe23eaaf608ab585bb4e1b5f2c7458a
BLAKE2b-256 ba63d19645bffab5f463dd4e7c0864c59013a7b4c1b22ec0b7f8397b9df85a83

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a35a4934b07afc5a2722c5d95fe68bf59e25269c723194f2df8a81eb7d70a202
MD5 0fafb1fe2daa58cdac9efe2839f5ae28
BLAKE2b-256 50ad62acc00b07f92e19e2f753d15382c127000500e6d8ee84e03b330fec49ef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 39251e7b02e3b4de4867b9e512976fa25a93409622d5b72a71a06083a7f9b3eb
MD5 67ee5d37d0fe3d71e978c77db8bce298
BLAKE2b-256 f24e7db810edba2898e3410065fcfd2279018734b7ed21a523d158559194279e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ce42302ce05b6735bf27c1d4f4db30fbdc170189b0d32d29f99ec26a55b1b62
MD5 8bcc296b64c6bd639b09f3413561aac0
BLAKE2b-256 c2dd2bbff198a0bf252643f46d9004d94377eb42069a81bb7e834bc4df9c695f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a37c1bb5d93a5de00e653d5af82c0e445a1987947516dbdd3afa2337e8bf356f
MD5 ecfba0c5bfb3d79242ae1f5701e2a49f
BLAKE2b-256 2caaca35327763db02f8b65a40c244b003fe31e42999687e6f9e0d0149a41010

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 93266627d596800677ba9028b53aa7471619389ea57d66ed4e8af04853de5585
MD5 9faed3ad2fd1c59e81181e77d43b11dd
BLAKE2b-256 bdc6abe29ae225421bebdbf82cff04da289104ef9c3cf9bb179a0ff823ca375d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c2b45422219668bc7f1df3a9f48b472a98a878b3ca4cd57f97ed5c0ca3d5266
MD5 11b1afd74cfe052a466826988991ca9a
BLAKE2b-256 6f148f048d495aa99440601568357d2f407df00b32f3a89ecff4a6d15d8ab538

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218181236-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 da5fd3c220bb7cca112c4154a4cfa6437f1930e9bb49941320711ab7b0710519
MD5 cd7c5d98f3dc1a7bc2eefe179a80d034
BLAKE2b-256 9041db5e5587187354a50440deb9c89bd11ff53ff57731572c438b0f7900f815

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page