Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52557cc4e51a6bc754bbd2ffe2b80b05077ccfca919635baf97204e6cc51dfea
MD5 456c366b42d4e25b63d7f6f72653d466
BLAKE2b-256 2f3ee50a164a17f7c7653ed153fb45b6e7d523179f0572abb0425cdc8e4883d0

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8577b0af8507eae33caa287538eb7c33149ef46b967aeaca9ebbf8911765f175
MD5 9be5f25bb799a2293116ada92e0fbe52
BLAKE2b-256 2e188cce4a6a5557e1f9afd65677b0586d34f1d3c6be9df109af4a9a069524c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f2f7b5e99b52fcaa649a94f3d4cf031f2f51f2731d2fcd5bc49d85a21058cb92
MD5 004dca7c7b8950a3a6b8a585f9f0bc85
BLAKE2b-256 27a87077afb1622de460ccf2681d3cc5249e37d71ca79cd3d16d3d04b6b3395a

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 212138bd2966f02a6b72a923860b19d730e5e0de1684fc294f1498d83ac06a95
MD5 32289adf4f1e7d1766f8238ee06f379f
BLAKE2b-256 573aec871a3207f4aefe913c08f9597b4569fc0b7ce0c3c171f8152cbca21ceb

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8e7acd5663425150445db41d8693e9926a6bf6b89a64fc90f7e2b040b1caefcf
MD5 27acbb56cf43fdf8ea6c8cc765b8ce3e
BLAKE2b-256 d19284408e42fddc97cd01e769a74c212e2546417b01d78d366ece58c015a55e

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 197a895d5d006a460c32e1740d1eb4e64a9518084a1e3ed95236fbd0c974195d
MD5 7a42a94f7e92f8386e4fa83d08f553f4
BLAKE2b-256 bbd83ec889d0c6eac70fa38e7cb0f872daeb9cf1d085fb03fa22af48ef1a47c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4d5d9718f195df0a6a21eef649192ccd427ec9a9c411e169cb894b360715ce3b
MD5 13e3f0a44028cf5c5b508d54bbc19c1e
BLAKE2b-256 31237181dc14a1e5c1b63ff0402a56004a7d2d26b2c36f069c355e3ef3fc7a15

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d8bc87b2fb132da2ff5c3a5d985ad343223fd9a365af2534492610367fe8b6c
MD5 3c4cc6b43da62ad33dbff8eb287ffee4
BLAKE2b-256 c6a2b0b6dc55afd0b89ad368c119f7443caea4c5e6cec7bf39d253089199a97b

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b5296efcacfe7da90facea933b364dd5dc1769f2197ff9806e1b71530f61e87c
MD5 29c873d2e3822a1a98524f3ece828591
BLAKE2b-256 6dae18ba78a70e6dd3856798755ece7dab85242239aa5f8fe6adbb22a988667f

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f541734b7be27ea4a4f38d0bdc6d68933e9463b8d6f3573669be0cdb56f90210
MD5 0b7e50b78038954ebae346b6c8bccec9
BLAKE2b-256 266f96d0bb94abe752a53af52daae2825d0ee2fdbd4b5b1055bc5550c274669d

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3d412eac2939d369312eda99e119e708e4be94189062a6ccc006a8c5fd65887b
MD5 aebbb0fc73ea2951ad86daf16e55f6c0
BLAKE2b-256 f712d1d46e3337cfda408450a2e2d73de9808d296f522bc825c8b6a0d783d91b

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426025327-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 00f73b62cc1d4fc0db1e1d0b194d7267f6c222fc093b417b15371ff85ef77c1c
MD5 81cde72e690a878cca52bc2705f6324e
BLAKE2b-256 4988ae8be2281908761371bbfcf1c53687f5cd7ae7a72e61fe257511a44cbec4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page