Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 12cf4f20dba7c376f9b89f4da63a75c5954805574b880fe998eb760e54496c77
MD5 9b78622a243721d1094d688977d28349
BLAKE2b-256 ac71dade072f969d864b86ac5ab0c38f4ac869bb466a720ca355ddf076415547

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3a3861cf2afa27a954cde67e362895497c2b8766f9aa27bc3b15090cf76036af
MD5 b254ae6472bacf571b3a38149db227a4
BLAKE2b-256 7889d2a9cc597ef62cef7b0379bbd8f0c8db72611fc97e29a53d0bf4fccb0458

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0bbc4d3078740d53090ea0134d00bd6180a710e7c7afc4a6739ac31dbd938852
MD5 0691c18022255567f3819cac887b3906
BLAKE2b-256 05223c698026e64abf02b3961edecb6c121d660f0f21ffa1ba3801b10d9def5c

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9f9fdb1293512192e2a2f9f2240785982bab6f49dc851843db6b0779c9e8bf95
MD5 b757e30b90996632fbd3bc341aee80a5
BLAKE2b-256 06778fffa8b97bbef6c7e1cf09b6bf27f2c34d06b3c67337711b8f4ad905cd4a

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 56382d1483f8f78b02f398c809cb383e0de5ded1f030eca2b2b32c2ed6244639
MD5 913ee267214a8d0d502a2ccfde8e4b55
BLAKE2b-256 d4a8bc072b4e1c50387d430e84728188d496f8ebcbe8a795cfb5a3c746b8e01f

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 392a9afe0aedb0b81d28eeea97aafa6c109d183a547c2fae57e2a37b223e36d9
MD5 65d7c06fd74b1a8b67e952be3c1ed63f
BLAKE2b-256 9435eb6ac4f82ad88b19ee8af3832fff5d4493e058e61556a11efcbdb1ffcb09

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5ba1c8e13794bacd7ac94e69425e9b1d1216eab409413f6fd99ce86569dabc23
MD5 0fdbda99503a0b69afd334523b72bf68
BLAKE2b-256 589b69f63fc27f448efdb7eb6c6e4dcac44020ca493ecc2405fd1cb7a742673b

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 63a7b37a10a36c7c617dbc64972374d15a4a7e4c67e36bb12783ac4f877f5311
MD5 9d2ed9249effc88f33b8e922c48f2141
BLAKE2b-256 28ab095aa04b20a98a6264d68968b96fa26d6a2df907f41e78df029c508c55c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6ba3ab5e69df5fa4ccacc97d8f993bca3c5b64cff8fdc3f8001ba6b47f9e5bb5
MD5 b41509f297e5dc4956e80351a6f54a38
BLAKE2b-256 1a4f4171566e2973cecb16464967f8f1107af408476ba47b2cc2372c97991ea3

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2a141c9c393f06ee6c49488c8e56cdbdf9eda4c4eafa472f4f5a83e0434d4fa0
MD5 dc1a49195c6ccff5b92000eca01f52ab
BLAKE2b-256 db52526c5177b7febaa554203cc59463a93ae17131198ba6b5f0ac6fbe038ffb

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1a989caf5188d25d92514c6ad28e96ec61cfbed984fb732f72b1917ad17d379
MD5 f20e08a85701c183d43eab80872f3f95
BLAKE2b-256 321e60cf25ff6a5b81262ccc4a16e2046f28b41302f890641793c5b6efe9b807

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210426232215-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 30ddc8c67161142940870feb378fcf05670d796ee2e4a9cfdd528d3a207ee297
MD5 dae3cd41f0ea51b804c7f99ee57b8a8f
BLAKE2b-256 378477c68c20d1a7074b2a277db504b3f13b67734e6146c2e18515735bb9be6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page